I would highly recommend you to read The Data Science Handbook. The data scientists in the book have helped create the very industry that is now having such a tremendous impact on the world. They discuss the mindset that allowed them to create this industry, address misconceptions about the field, share stories of specific challenges and victories, and talk about what they look for when building their teams.
How to Think Like a Data Scientist in 12 Steps
At the moment, data scientists are getting a lot of attention, and as a result, books about data science are proliferating. While searching for good books about the space, it seems to me that the majority of them focus more on the tools and techniques rather than the nuanced problem-solving nature of the data science process. That is until I encountered Brian Godsey’s “Think Like a Data Scientist.”
The 7 NLP Techniques That Will Change How You Communicate in The Future (Part II)
From machine translation that connects humans across cultures, to conversational chatbots that help with customer service; from sentiment analysis that deeply understands a human’s mood, to attention mechanisms that can mimic our visual attention, the field of NLP is too expansive to cover completely, so I’d encourage you to explore it further, whether through online courses, blog tutorials, or research papers.
The 7 NLP Techniques That Will Change How You Communicate in The Future (Part I)
NLP is certainly one of the most important technologies of the information age. Understanding complex language utterances is also a crucial part of artificial intelligence. Fully understanding and representing the meaning of language is an extremely difficult goal. Why? Because the human language is quite special.
The 5 Machine Learning Use Cases that Optimize Your Airbnb Travel Experience
The 5 Computer Vision Techniques That Will Change How You See The World
Computer Vision is one of the hottest research fields within Deep Learning at the moment. It sits at the intersection of many academic subjects, such as Computer Science (Graphics, Algorithms, Theory, Systems, Architecture), Mathematics (Information Retrieval, Machine Learning), Engineering (Robotics, Speech, NLP, Image Processing), Physics (Optics), Biology (Neuroscience), and Psychology (Cognitive Science).
The 5 Deep Learning Frameworks Every Serious Machine Learner Should Be Familiar With
Snapchat's Filters: How computer vision recognizes your face
In those moments of boredom when you're playing with Snapchat's filters - sticking your tongue out, ghoulifying your features, and working out how to get the flower crown to fit exactly on your head - surely you've had a moment where you've wondered what's going on, on a technical level - how Snapchat manages to match your face to the animations?
16 Useful Advice for Aspiring Data Scientists
Data Scientists at Work displays how some of the world’s top data scientists work across a dizzyingly wide variety of industries and applications — each leveraging her own blend of domain expertise, statistics, and computer science to create tremendous value and impact.
12 Useful Things to Know about Machine Learning
Machine learning algorithms can figure out how to perform important tasks by generalizing from examples. This is often feasible and cost-effective where manual programming is not. As more data becomes available, more ambitious problems can be tackled. As a result, machine learning is widely used in computer sincere and other fields. However, developing successful machine learning applications requires a substantial amount of “black art” that is hard to find in textbooks.