Last week, I attended apply(), Tecton’s first-ever conference that brought together industry thought leaders and practitioners from over 30 organizations to share and discuss ML data engineering’s current and future state. The complexity of ML data engineering is the most significant barrier between most data teams and transforming their applications and user experiences with operational ML.
In this long-form blog recap, I will dissect content from 23 sessions and lightning talks that I found most useful from attending apply(). These talks cover everything from the rise of feature stores and the evolution of MLOps, to novel techniques and scalable platform design. Let’s dive in!