Summer Internship Presentation James Le

August 20th, 2019

DATA JOURNALISM

Agenda

- 1. Credit Card Insights on Customer Risk
- 2. Intro to ZAML Monitor
- 3. The Case for Ensemble Learning

Credit Card Insights on Consumer Risk

Using ZAML Explain to explore the relationship between purchase behavior and credit risk

Experiment

- Discover Data:
 - 36,247 customers
 - 701 features
- Binary Target:
 - Personal loans
 - 0 default, 1 paid
- Model:
 - XGBoost
 - 0.61 AUC

The more you spend at gas stations, the worse your credit risk will be

Other Comparisons (> = Higher Risk)

- Transit > Uber > Lyft
- Delta > United > Southwest
- Birchbox > Stitch Fix
- Spotify > Pandora

- GEICO Insurance > State Farm Insurance
- Square > PayPal
- Shopify > Etsy
- Nike > Zappos

Intro To ZAML Monitor

Using ZAML Monitor to detect changes in model performance

ML Monitoring Approaches

- Concept Drift
- KS and PSI Tests look at individual features in isolation
- Autoencoder (AE) learn the model behavior
- ZAML Monitor uses a customized AE for the specific ML production model for the specific business problem

Experiment

- Akbank Data:
 - 970,000 customers
 - 3,300 features
- Binary Target:
 - Personal loans
 - 0 delinquent, 1 paid
- Model:
 - Neural Network
 - 0.82 AUC (Validation Set)
- Monitor: (Test Set)
 - Standard AE
 - ZAML Monitor's AE

ZAML Monitor is better than common industry practice

Standard Autoencoder

ZAML Monitor's Autoencoder

The Case for Ensemble Learning

More Heads Are Better Than One

Experiment

- Prestige Data:
 - **>100,000 customers**
 - >1,100 features
- Binary Target:
 - Auto loans
 - 0 default, 1 paid
- Models:
 - 4 XGBoost
 - 2 Neural Network
 - Stacked Ensemble

Ensembles Are Better!

Model Type	AUC	KS	Est. Dollars Saved
Ensemble	0.803	0.446	\$21M
XGB 1	0.791 (2%)	0.420 (6%)	\$18M (14%)
XGB 2	0.791 (2%)	0.428 (4%)	\$18M (12%)
XGB 3	0.781 (3%)	0.411 (9%)	\$17M (16%)
XGB 4	0.782 (3%)	0.413 (8%)	\$17M (16%)
ANN 1	0.750 (7%)	0.376 (19%)	\$16M (19%)
ANN 2	0.786 (2%)	0.430 (4%)	\$18M (13%)

Complexity

Challenges with Ensembles

Explainability

Compliance

Down The Road

- GIG: Generalized Integrated
 Gradients (Zest's New
 Explainability Math)
- ZAML Fair & ZAML Autodoc
- Synthetic Data Generation

Lessons Learned

Minimum Viable Analysis

Shorten The Feedback Loop

Trustworthy Data Analysis

Cognitive Diversity

Diversity of Thought

Lateral Thinking

Impact

Credit Underwriting

Fair Housing

· bruce, vp comms.

Thruce, vp comms

· bruce, vp comms.

Appendix

What Drives The Price Of An Airbnb Listing?

Using ZAML Explain to reveal the best amenities and the most valuable neighborhoods

Experiment

- Inside Airbnb Data:
 - **38,170 listings**
 - 564 features
- Numeric Target:
 - Price of the listing
- Model:
 - Random Forest
 - 0.62 R-Squared

Feature Importance

- Most important factors:
 - Bathrooms
 - Bedrooms
 - Entire Home/Apartment
- Most valuable neighborhoods:
 - Malibu
 - \circ Venice
 - Hollywood Hills
 - Santa Monica

- Most useful amenities:
 - Swimming pool
 - \circ Smoke detector
 - Free parking
 - Indoor fireplace
 - Hot-tub
 - Elevator
 - Gym

Cheaper listings tend to have more amenities and more reviews

