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Abstract

Neural networks have been highly influential in the past decades in the machine learning community,
thanks to the rise of compute power, the abundance of unstructured data, and the advancement of al-
gorithmic solutions. However, it is still a long way for researchers to completely use neural networks
in real-world settings where the data is scarce and requirements for model accuracy/speed are criti-
cal. Meta-learning, also known as learning how to learn, has recently emerged as a potential learning
paradigm that can learn information from one task and generalize that information to unseen tasks
proficiently. In this report, the key questions that I attempt to answer are: (1) Why do we need meta-
learning?, (2) How does the math of meta-learning work?, and (3) What are the different approaches to

design a meta-learning algorithm?

1 Motivation For Meta-Learning

Thanks to the advancement in algorithms, data, and compute power in the past decade, deep neural
networks have allowed us to handle unstructured data (such as images, text, audio, video, etc.) very well
without the need to engineer features by hand. Empirical research has shown that if neural networks
can generalize very well if we feed them large and diverse inputs. For example, Transformers [1] and
GPT-2 [2] have made the wave in the Natural Language Processing research community last year with

their wide applicability in various tasks.
However, there is a catch with using neural networks in the real-world setting where:

e Large datasets are unavailable? This issue is common in many domains ranging from classi-



fication of rare diseases to translation of rare languages. It is clearly impractical to learn from

scratch for each task in these scenarios.

e Data has a long tail? This issue can easily break the standard machine learning paradigm. For
example, in the self-driving car setting, an autonomous vehicle can be trained to handle common
situations very well, but it often struggles with uncommon situations (such as people jay-walking,
animals crossing, traffic lines not working) where humans can easily handle. This can lead to very

bad outcomes, such as the Uber’s accident in Arizona a few years ago.

e We want to quickly learn something about a new task without training our model from
scratch? Humans can do this quite easily by leveraging our prior experience. For example, if
I know a bit of Spanish, then it should not be too difficult for me to learn Italian, as these two

languages are quite similar linguistically.

In this report, I would like to give an introductory overview of meta-learning, which is a learning
framework that can help our neural network become more effective in the settings mentioned above. In
this setup, we want our network to learn a new task more proficiently - assuming that it is given access

to data on previous tasks.
Historically, there has been a few papers thinking along this direction.
e Backin 1992, Bengio et al. [3] looked at the possibility of a learning rule that can solve new tasks.

e In 1997, Caruana [4] wrote a survey about multitask learning, which is a variant of meta-learning.
He explained how tasks can be learned in parallel using a shared representation between mod-
els and also presented a multitask inductive transfer notion that uses back-propagation to handle

additional tasks.

e In 1998, Thrun [5] explored the problem of lifelong learning, which is inspired by the ability of

humans to exploit experiences that come from related learning tasks to generalize to new tasks.

Right now is an exciting period to study meta-learning because it is increasingly becoming more fun-
damental in machine learning research. There are many recent works that have leveraged meta-learning

algorithms (and their variants) to do well for the given tasks. A few examples include:

e Aharoni et al. [6] expands the number of languages used in a multi-lingual neural machine trans-

lation setting from 2 to 102. Their method learns a small number of languages and generalizes
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Figure 1: The Domain-Adaptive Meta-Learning system described in [7]

them to a vast amount of other.

e Yu et al. [7] presents Domain-Adaptive Meta-Learning (figure 1), a system that allows robots

to learn from a single video of a human via prior meta-training data collected from related tasks.

e A recent paper from YouTube [8] shows how their team used multi-task methods to make video

recommendations and handle multiple competing ranking objectives.

Forward looking, the development of meta-learning algorithms will help democratize deep learning and
solve problems in domains with limited data.
2 Basics of Meta-Learning

In this section, I will cover the basics of meta-learning. Let’s start out with the mathematical formulation

of supervised meta-learning.

2.1 Formulation

In a standard supervised learning, we want to maximize the likelihood of model parameters ¢ given the

training data D:

arg mgxlogp(¢|D) (H



Equation (1) can be redefined as maximizing the probability of the data given the parameters and maxi-
mizing the marginal probability of the parameters, where p(D|¢) corresponds to the data likelihood and

p(¢) corresponds to a regularizer term:

= argmax logp(D|¢) + logp(¢) 2

Equation (2) can be further broken down as follows, assuming that the data D consists of (input, label)

pairs of (x;,y;):

= argmax > " logp(yilzi, @) + logp(¢) 3)

However, if we deal with very large data D (as in most cases with complicated problems), our model
will likely overfit. Even if we have a regularizer term here, it might not be enough to prevent that from

happening.

The key problem that supervised meta-learning solves is Is it feasible to get more data when dealing

with supervised learning problem?
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Figure 2: The Meta-Learning Setup described in [9]

Ravi and Larochelle [9] is the first paper that provides a standard formulation of the meta-learning setup,

as seen in figure 2. They reframe equation (1) to equation (4) below, where Detq—train 1S the meta-



training data that allows our model to learn more efficiently. Here, Dy,etq—trqin cOrresponds to a set of

datasets for predefined tasks Dy, Do, - -+ , D,,.

arg m(?x lng(gb|D, Dmetaftrain) (4)
Next, they design a set of meta-parameters 6 = p(0|D,,etq—train ), Which includes the necessary infor-
mation about D,,ctq—train 1N Order to solve the new tasks.

Mathematically speaking, with the introduction of this intermediary variable 6, the full likelihood of
parameters for the original data given the meta-training data (in equation (4)) can be expressed as an

integral over the meta-parameters 6:

lOQP(¢\D7 Dmeta—train) = lOg/@P(¢|Da e)p((b‘Dmeta—train)de (5)

Equation (5) can be approximated further with a point estimate for our parameters:

~ lng(d)|D, ‘9*) + logp(0*|Dmeta7train) (6)

e p(¢|D, %) is the adaptation task that collects task-specific parameters ¢ for a new task - assuming

that it has access to the data from that task DD and meta-parameters 6.

o p(0*| Dieta—train) is the meta-training task that collects meta-parameters 6 - assuming that it

has access to the meta-training data D ,eiq—train-
To sum it up, the meta-learning paradigm can be broken down into two phases:
e The adaptation phase: ¢* = arg m;)xx logp(¢|D, 0*) (first term in (6))

e The meta-training phase: 0* = arg meax logp(0| Dimeta—train) (second term in (6))



2.2 Loss Optimization

Let’s look at the optimization of meta-learning method. Initially, our meta-training data consists of pairs

of training-test set for every task:

Dmetaftrain = {(D?ama DieSt)a ) (DZTain’ szeSt)} (7)

There are k feature-label pairs (z, y) in the training set D!"*" and [ feature-label pairs (x, y) in the test

set Df“t:

Dirain — [zt gy oo (2h, yi)); Diest = {2, yt), - (2, i)} (8)

During the adaptation phase, we infer a set of task-specific parameters ¢*, which is a function that takes
as input the training set D'"*™ and returns as output the task-specific parameters: ¢* = fy« (D! @),
Essentially, we want to learn a set of meta-parameters  such that, the function ¢; = fy(D!"%") is good

enough for the test set D",

During the meta-learning phase, to get the meta-parameters 6*, we want to maximize the probability of

the task-specific parameters ¢ being effective at new data points in the test set D!

* . test
0 —mgx;logp(@!l?z ) ©)

2.3 Meta-Learning Paradigm

According to Chelsea Finn [10], there are two views of the meta-learning problem: a deterministic view

and a probabilistic view.

The deterministic view is straightforward: we takes as input a training data set D!"%"  a test data point
Ttest, and the meta-parameters 6 to produce the label corresponding to that test input y;.s;. The way we

learn this function is via the Dy,etq—train as discussed earlier.

Ytest = [(DT™ Tyess; 0) (10)



The probabilistic view incorporates Bayesian inference: we perform a maximum likelihood inference
over the task-specific parameters ¢; - assuming that we have the the training dataset D" and a set of

meta-parameters 6:

Z,Dtrain 11
mgxzi:logp(qb\ HES| (1)

Regardless of the view, there two steps to design a meta-learning algorithm:
e Step 1 is to design the function p(¢;| D", §) during the adaptation phase.
e Step 2 is to optimize 6 with respect to Dyetq—trqin during the meta-training phase.

In this report, I will only pay attention to the deterministic view of meta-learning. In the remaining
sections, I focus on the three different approaches to build up the meta-learning algorithm: (1) The
black-box approach, (2) The optimization-based approach, and (3) The non-parametric approach. More
specifically, I will go over their formulation, architectures used, and challenges associated with each

approach.

3 Black-Box Meta-Learning

3.1 Formulation

The black-box meta-learning approach uses neural network architecture to generate the distribution
p(¢i|D;§rain’ 0)
e Our task-specific parameters are: ¢; = fp(DI"e™).

e A neural network with meta-parameters 6 (denoted as fy) takes in the training data D%mm as input

and returns the task-specific parameters ¢; as output.

e Another neural network (denoted as g(¢;)) takes in the task-specific parameters ¢; as input and

returns the predictions about test data points D!** as output.

During optimization, we maximize the log likelihood of the outputs from g(¢;) for all the test data



points. This is applied across all the tasks in the meta-training set:

m;ix; Z loggge, (y|x) (12)

© @a)Diest

The log likelihood of g(¢;) equation (12) is essentially the loss between a set of task-specific parameters

¢i and a test data point D!*s":

Y. loggs(ylx) = L(¢s, D) (13)
(:E,y)ND:-‘ESt

Then in equation (12), we optimize the loss between the function fy(D"*") and the evaluation on the

test set DfeSt:

train test
mgX;L(fe(Di ), D) (14)

This is the black-box meta-learning algorithm in a nutshell:

We sample a task T}, as well as the training set D" and test set D{**! from the task dataset D;.

e We compute the task-specific parameters ¢; given the training set D" ¢; «— fy(Diraim),

Then, we update the meta-parameters ¢ using the gradient of the objective with respect to the loss

function between the computed task-specific parameters ¢; and D!*5': Wy L(¢;, Di¢t).

This process is repeated iteratively with gradient descent optimizers.

3.2 Challenges

The main challenge with this black-box approach occurs when ¢; happens to be massive. If ¢; is a set

of all the parameters in a very deep neural network, then it is not scalable to output ¢;.

Santoro et al. [11] and Mishra et al. [14] are two research papers that tackle this. Instead of having a
neural network that outputs all of the parameters ¢;, they output a low-dimensional vector h;, which is
then used alongside meta-parameters ¢ to make predictions. The new task-specific parameters ¢; has

the form: ¢; = {h;,0,}, where 6, represents all of the parameters other than h.



Overall, the general form of this black-box approach is as follows:

yts — fe(Dfrain7 xtS) (15)

Here, y'* corresponds to the labels of test data, xts corresponds to the features of test data, and Dﬁmm

corresponds to pairs of training data.
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Figure 3: The memory-augmented neural network as described in [11].

3.3 Architectures
So what are the different model architectures to represent this function f?

e Memory-Augmented Networks by Santoro et al. [11] uses Long Short-Term Memory and Neu-
ral Turing Machine architectures to represent f. Both architectures have an external memory
mechanism to store information from the training data point and then access that information

during inference in a differentiable way, as seen in figure 3.

e Conditional Neural Processes by Garnelo et al. [12] represents f via 3 steps: (1) using a feed-
forward neural network to compute the training data information, (2) aggregating that information,

and (3) passing that information to another feed-forward network for inference.

e Meta Networks by Munkhdalai and Yu [13] uses other external memory mechanisms with slow

and fast weights that are inspired by neuro-science to represent f. Specifically, the slow weights



are designed for meta-parameters ¢ and the fast weights are designed for task-specific parameters
.

e Neural Attentive Meta-Learner by Mishra et al. [14] uses an attention mechanism to represent
f. Such mechanism allow the network to pick out the most important information that it gathers,

thus making the optimization process much more efficient, as seen in figure 4.
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Figure 4: The simple neural attentive meta-learner as described in [14].

In conclusion, black-box meta-learning approach has a high learning capacity. Given that neural net-
works are universal function approximators, the black-box meta-learning algorithm can represent any
function of our training data. However, as neural networks are fairly complex and the learning process
usually happens from scratch, black-box approach usually requires a large amount of training data and

a large number of tasks in order to perform well.

10



4 Optimization-Based Meta-Learning

Okay, so how else can we represent the distribution p(¢;|D{"®" 6) in the adaptation phase of meta-
learning? If we want to infer all the parameters of our network, we can treat this as an optimization
procedure. The key idea behind optimization-based meta-learning is that we can optimize the process

of getting the task-specific parameters ¢; so that we will get a good performance on the test set.

4.1 Formulation

Recall that the meta-learning problem can be broken down into two terms below, one that maximizes
the likelihood of training data given the task-specific parameters and one that maximizes the likelihood

of task-specific parameters given meta-parameters:

Hf.bx Llogp(DI™*™|¢;) + logp(¢:|0) (16)

Here the meta-parameters § are pre-trained during training time and fine-tuned during test time. The

equation below is a typical optimization procedure via gradient descent, where « is the learning rate.

¢+ 0 — aVyL (6, Do) (17)

To get the pre-trained parameters, we can use standard benchmark datasets such as ImageNet for com-
puter vision, Wikipedia Text Corpus for language processing, or any other large and diverse datasets
that we have access to. As expected, this approach becomes less effective with small amount of training

data.

Model-Agnostic Meta-Learning (MAML) from Finn et al. [15] is an algorithm that address this ex-
act problem. Taking the optimization procedure in equation (17), it adjusts the loss so that only the
best-performing task-specific parameters ¢ on test data points are considered. This happens for all the

tasks:

: o train test
HmeL(G aVeL(, Direm), Diesty (18)

task;

11



The key idea is to learn 6 for all the assigned tasks in order for 6 can transfer effectively via the opti-

mization procedure.

This is the optimization-based meta-learning algorithm in a nutshell:

We sample a task T3, as well as the training set Dfmm and test set DfeSt from the task dataset D;.

e We compute the task-specific parameters ¢; given the training set Dﬁmm using the optimization

procedure described above: ¢; < 6 — aVyL(0, Dire™).

Then, we update the meta-parameters ¢ using the gradient of the objective with respect to the loss

function between the computed task-specific parameters ¢; and D*s*: VyL(¢;, DL*5)

This process is repeated iteratively with gradient descent optimizers.

As provided in the previous section, the black-box meta-learning approach has the general form: 3¢5t =
fo(Dirain ptest)  The optimization-based MAML method described above has a similar form below,

where ¢; = 0 — aVyL(¢, Dir*n):

ytest — fMAML (Dfrm’n’ ztest) — f¢z (xtest) (19)

To prove the effectiveness of the MAML algorithm, in [16], Finn and Levine shows that the MAML
algorithm can approximate any function of D" zt¢st for a very deep function f. This finding demon-
strates that the optimization-based MAML algorithm is as expressive as any other black-box algorithms

mentioned previously.

4.2 Architectures

In [17], Grant et al. provides another MAML formulation as a method for probabilistic inference via
hierarchical Bayes. Let’s say we have a graphical model as illustrated in figure 5, where J is the task,

xj, is a data point in that task, ¢, are the task-specific parameters, and ¢ are the meta-parameters.

To do inference with respect to this graphical model, we want to maximize the likelihood of the data

12



Figure 5: The probabilistic graphical model for which MAML provides an inference procedure as de-
scribed in [17].

given the meta-parameters:

max log H p(D;1) (20)
J

The probability of the data given the meta-parameters can be expanded into the probability of the data
given the task-specific parameters and the probability of the task-specific parameters given the meta-

parameters. Thus, equation (20) can be rewritten as:

=log]] /p(Dj|¢j)p(¢j!9)d¢j 1)
i

This integral in equation (21) can be approximated with a Maximum a Posteriori estimate for ¢;:

~ log [ [ p(Dilé;)p(6510) (22)
j

In order to compute this Maximum a Posteriori estimate, Grant et al. [17] performs inference on Maxi-
mum a Posteriori under an implicit Gaussian prior - with mean that is determined by the initial param-

eters and variance that is determined by the number of gradient steps and the step size.
There have been other attempts to compute the Maximum a Posteriori estimate in equation (22):

e Rajeswaran et al. [18] proposes an implicit MAML algorithm that uses gradient descent with an

13
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Figure 6: The ALPaCA algorithm which uses Bayesian linear regression as described in [19].

explicit Gaussian prior. More specifically, they regularize the inner optimization of the algorithm
to be close to the meta-parameters 0: ¢ Hé)lll’l L(¢', D'@m) 4 2{|0 — ¢/||%. The mean and the

variance of this explicit Gaussian prior is a function of A regularizer.

e Harrison et al. [19] proposes the ALPaCA algorithm that uses an efficient Bayesian linear re-
gression on top of the learned features from the inner optimization loop to represent the mean and
variance of that regression as meta-parameters themselves (illustrated in figure 6). The inclusion
of prior information here reduces computational complexity and adds more confidence to the final

predictions.

e Bertinetto et al. [20] attempts to solve meta-learning with differentiable closed-form solutions.
In particular, they apply a ridge regression as a base learner for the features in the inner opti-
mization loop. The mean and variance predictions from the ridge regression are then used as

meta-parameters in the outer optimization loop.

e Lee et al. [21] attempts to solve meta-learning with differentiable convex optimization solu-
tions. The proposed method, called MetaOptNet, uses a support vector machine to learn the

features from the inner optimization loop (as seen in figure 7).

4.3 Challenges

The MAML method requires very deep neural architecture in order to effectively get a good inner gra-

dient update. Therefore, the first challenge lies in choosing that architecture. Kim et al. [22] proposes

14
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Figure 7: The MetaOptNet approach as described in [21].

Auto-Meta, which searches for the MAML architecture. They found that the highly non-standard ar-

chitectures with deep and narrow layers tend to perform very well.

The second challenge that comes up lies in the unreliability of the two-degree optimization paradigm.

There are many different optimization tricks that can be useful in this scenario:

e Lietal. [23] proposes Meta-SGD that learns the initialization parameters, the direction of the
gradient updates, and the value of the inner learning rate in an end-to-end fashion. This method

has proven to increase speed and accuracy of the meta-learner.

e Behl et al. [24] comes up with Alpha-MAML, which is an extension of the vanilla MAML.
Alpha-MAML uses an online hyper-parameter adaptation scheme to automatically tune the learn-

ing rate, making the training process more robust.

e Zhou et al. [25] devises Deep Meta-Learning, which performs meta-learning in a concept space.
As illustrated in figure 8, the concept generator generates the concept-level features from the
inputs, while the concept discriminator discriminates the features generated from that first step.
The final loss function includes both the loss from the discriminator and the loss from the meta-

learner.

e Zintgraf et al. [26] designs CAVIA, which stands for fast context adaptation via meta-learning.
To handle the overfitting challenge with vanilla MAML, CAVIA optimizes only a subset of the
input parameters in the inner loop at test time (deemed context parameters), instead of the whole
neural network. By separating the task-specific parameters and task-independent parameters, they

show that training CAVIA is highly efficient.

15



e Antoniou et al. [27] ideates MAMLA++, which is a comprehensive guideline on reducing the
hyper-parameter sensitivity, lowering the generalization error, and improving MAML stability.
One interesting idea is that they disentangle both the learning rate and the batch-norm statistics

per step of the inner loop.
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Figure 8: The Deep Meta Learning as described in [25].

The third challenge lies in the computational expense associated with back-propagation. The more
inner gradient steps, the more challenging the optimization process is. There are two approaches to deal
with this:

d

e Finn et al. [15] and Nichol et al. [28] truncate the back-propagation by approximating the dd’ei

matrix as an identity function. This proves to work for simple few-shot learning problems.

Cifé implicitly. The key benefit

e Rajeswaran et al. [18] uses a theorem to compute the meta-gradient
of this algorithm is that the outcome only depends on the inner optimization’s solution, but not the

number of inner gradient steps required.

In conclusion, optimization-based meta learning works by constructing a two-degree optimization pro-
cedure, where the inner optimization computes the task-specific parameters ¢ and the outer optimization
computes the meta-parameters 6. The most representative method is the Model-Agnostic Meta-Learning

algorithm, which has been studied and improved upon extensively since its conception.

The big benefit of MAML is that we can optimize the model’s initialization scheme, in contrast to the
black box approach where the initial optimization procedure is not optimized. Furthermore, MAML
is highly consistent, which extrapolates well to learning problems where the data is out-of-distribution
(compared to what the model has seen during meta-training). Unfortunately, because optimization-based

meta learning requires second-order optimization, it is very computationally expensive.
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5 Non-Parametric Meta Learning

So can we perform the learning procedure described above without a second-order optimization? This

is where non-parametric methods fit in.

Non-parametric methods are very effective at learning with small amount of data (k-Nearest Neighbor,
decision trees, support vector machines). In non-parametric meta learning, we compare the test data
with the training data using some sort of similarity metric. If we find the training data that are most

similar to the test data, we assign the labels of those training data as the label of the test data.

5.1 Formulation
This is the non-parametric meta-learning algorithm in a nutshell:
e We sample a task 7T}, as well as the training set D"%" and test set D! from the task dataset D;.

e We predict the test label 7***! via the similarity between training data and test data (represented

by fo): gt = > fo(at )y

Tk, Yk cDtrain
e Then we update the meta-parameters ¢ of this learned embedding function with respect to the loss

function of how accurate our predictions are on the test set: Vo L(§¢5, y!¢5%)

o This process is repeated iteratively with gradient descent optimizers.

Unlike the black-box and optimization-based approaches, we no longer have the task-specific parameters

¢, which is not required for the comparison between training and test data.

5.2 Architectures
Now let’s go over the different architectures used in non-parametric meta-learning methods.

Koch et al. [29] proposes a Siamese network which consists of two tasks: verification task and one-shot
task. Taking in pairs of images during training time, the network verifies whether they are of the same
class or different classes. At test time, the network performs one-shot learning: comparing each image
Ttest to the images in the training set D;mm for a respective task, and predicting the label of x5 that

corresponds to the label of the closest image. Figure 9 illustrates this strategy.

Vinyals et al. [30] proposes Matching Networks, which matches the actions happening during training

17
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Figure 9: The Siamese Network strategy devised in [29].

time at test time. The network takes the training data and the test data and embeds them into their
respective embedding spaces. Then, the network compares each pair of train-test embeddings to make

the final label predictions:

gt = fala a)yn (23)

Tk, Yk eDtrain

The Matching Network architecture used in Matching Networks includes a convolutional encoder net-
work to embed the images and a bi-directional Long-Short Term Memory network to produce the embed-

dings of such images. As seen in figure 10, the examples in training match the examples in test.

Snell et al. [31] proposes Prototypical Networks, which create prototypical embeddings for all the
classes in the given data. Then, the network compares those embeddings to make the final label predic-

tions for the corresponding class.

Figure 11 provides a concrete illustrations of how Prototypical Networks look like in the few-shot sce-

18



Figure 10: The Matching Networks architecture described in [30]
nario. cy, cg, and c3 are the class prototypical embeddings, which are computed as:

1
Ck = Dirain Z fo(x) (24)

e

Then, we compute the distances from z to each of the prototypical class embeddings: D( fy(z), ck).

Figure 11: Prototpyical Networks as described in [31]

To get the final class prediction py(y = k|x), we look at the probability of the negative distances after a

softmax activation function, as seen below:

L softmar(-D(fy(x).c0))
Poly = Kl) = = o Fimaz(—D(fo(x), ) 23
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5.3 Challenge

For non-parametric meta-learning, how can we learn deeper interactions between our inputs? Near-
est neighbor probably will not work well when our data is high-dimensional. Here are three papers that

attempt to accomplish this:

e Sung et al. [32] comes up with RelationNet (figure 12), which has two modules: the embedding
module and the relation module. The embedding module embeds the training and test inputs to
training and test embeddings. Then the relation module takes in the embeddings and learns a deep

distance metric to compare those embeddings (function D in equation (25)).

e Allen et al. [33] proposes an Infinite Mixture of Prototypes. This is an extension of the Prototyp-
ical Networks, in the sense that it adaptively sets the model capacity based on the data complexity.
By assigning each class its own cluster, this method allows the use of unsupervised clustering,

which is helpful for many purposes.

e Garcia and Bruna [34] uses a Graph Neural Network in their meta-learning paradigm. By map-
ping the inputs into their graphical representation, they can easily learn the similarity between

training and test data via the edge and node features.

embedding module relation module

Feature maps concatenation

Relation One-hot
score  vector

fqv 9 u

Figure 12: Relation Networks as described in [32]
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6 Conclusion

In this report, I have discussed the motivation for meta-learning, the basic formulation and optimiza-
tion objective for meta-learning, as well as the three approaches regarding the design of meta-learning

algorithm. In particular:

¢ Black-box meta-learning algorithms have very strong learning capacity, in the sense that neural
networks are universal function approximators. But if we impose certain structure into the func-
tion, there is no guarantee that black-box models will produce consistent results. Additionally,
we can use black-box approaches with different types of problem settings such as reinforcement
learning and self-supervised learning. However, because black-box models always learn from

scratch, they are very data-hungry.

e Optimization-based meta-learning algorithms can be reduced down to gradient descent; thus,
it’s reasonable to expect consistent predictions. For a deep enough neural networks, optimization-
based models also has very high capacity. Because the initialization is optimized internally,
optimization-based models has a better head-start than black-box models. Furthermore, we can
try out different architectures without any real difficulty, as evidenced by the Model-Agnostic
Meta-Learning (MAML) learning paradigm. However, the second-order optimization procedure

makes optimization-based approaches quite computationally expensive.

e Non-parametric meta-learning algorithms have good learning capacity for most choice of ar-
chitectures as well as good learning consistency under the assumption that the learned embedding
space is effective enough. Furthermore, non-parametric approaches do not involve any back-
propagation, so they are computationally fast and easy to optimize. The downside is that they are

hard to scale to large batches of data, because they are non-parametric.

There are a lot of exciting directions for the field of meta-learning, such as Bayesian Meta-Learning (the
probabilistic view of meta-learning) and Meta Reinforcement Learning (the use of meta-learning in the
reinforcement learning setting). I'd certainly expect to see more real-world applications in wide-ranging

domains such as healthcare and manufacturing using meta-learning under the hood.
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