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1 - Mativation rFor Meta-Learning
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Long Tail: Intelligence Reporting, Science Data, Dark Data

What If Our Data Has A Long Tail?



What If We Want to Quickly Learn Something New?



Multitask Learning*

RICTT CARUANA

Multitask Learning (MTL) is an inductive transfer mechanism whose principle goal is
to improve generalization performance. MTL improves generalization by leveraging the
domain-specilic information contained in the training signals of related tasks. It does this by
training lasks in parallel while using a shared representation. In effect, the training signals
for the extra tasks serve as an inductive bias. Section 1.2 argues that inductive transfer is
important if we wish to scale tabula rasa learning to complex, real-world tasks. Section 1.3
presents the simplest method we know for doing multitask inductive transfer, adding extra
tasks (i.e., extra outputs) to a backpropagation net. Because the MTL net uses a shared
hidden layer trained in parallel on all the tasks, what is learned for each task can help other
tasks be learned better. Section 1.4 argues that it is reasonable to view training signals as
an inductive bias when they are used this way.

Caruana, 1997

Is Learning The n-th Thing Any Easier Than
Learning The First?

Sebastian Thrun'

They are often able to generalize correctly even from a single training example [2, 10]. One
of the key aspects of the learning problem faced by humans, which differs from the vast
majority of problems studied in the field of neural network learning, is the fact that humans
encounter a whole strcam of learning problems over their entire lifetime. When faced with
a new thing to learn, humans can usually exploit an enormous amount of training data and
experiences that stem from other, related learning tasks. For example, when learning to drive
a car, years of learning experience with basic motor skills, typical traffic patterns, logical
reasoning, language and much more precede and influence this learning task. The transfer of
knowledge across learning tasks seems to play an essential role for generalizing accurately,
particularly when training data is scarce.

Thrun, 1998

On the Optimization of a Synaptic Learning

Rule

Samy Bengio Yoshua Bengio Jocelyn Cloutier Jan Geesei
Université de Montréal, Département IRO

'I'his paper presents a new approach to neural modeling based on the idea of using
an automated method to optimize the parameters of a synaptic learning rule. The
synaptic modification rule is considered as a parametric function. This Tunction has
local inputs and iz the same in many neurons. We can use standard optimization
methods to select appropriate parameters for a given type of task. We also present a
theoretical analysic permitting to study the generalization property of such parametric
learning rules. DBy generalization, we mean the possibility for the learning rule fo

learn to solve new tasks, Experiments were performed on three types of problems: a

Bengio et al. 1992
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¢ - Basics 0f Meta-Learning
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Supervised Learning arg mas ogp(¢|D)

= arg mq?x lagp(D|¢) + lOQP((b)

= arqg mq?xz logp(yz'|x7;, ¢) T lOQP(@

e Big models require large amounts of labeled data
e Labeled data for some tasks may be very limited
e (Can we incorporate additional data?



. . arg maxlogp(¢| D, Dmeta—train)
sSupervised Meta-Learning ¢

logp(&| D, Dieta—train) = long(¢|D7e)p(QbIDmeta—train)de

Bg--- .M ~ logp()|D, 0") + logp(0* | Dyeta—train)

Meta-
Train
2, 4

Adaptation Task Meta-Training Task

Meta-
Test
-//mtln— tes

Ravi and Larochelle, ICLR 2017



Meta-Learning | |
Optlmlza'[l[)n Dmeta—traz'n - {(Dirazn’ Diest)’ oo (Dfl’r’azn’ DZest)}

Meta-Training Phase:
¢* = arg max log p(¢|D,8%) Dfrain :{(xﬂi’yi% 7(x}c7y/7;:)} DteSt {(xlayl) ' 7($f,yf)}
Adaptation Phase:

0* =max log p(0|D_{meta-train})

n
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is good enough for Dits



The Recipe to Design a Meta-Learning Algorithm

1. Choose a form of p(¢i| Ditr, 6) (adaptation
task)

2. Choose how to optimize B with respect to
maximum-likelihood objective using
D_{meta-train} (meta-training task)



j - Black-Box Meta-Learning
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Black-Box Meta-Learning Algorithm

1. Sample a task Ti (or mini batch of tasks)
2. Sample disjoint sets Ditr and Dit from D;
3. Compute ¢i — f_{O} (Ditr)

4. Update 6 using V_{6} L(¢i, Dit)



Challenge

Outputting all neural net parameters won't be scalable!

Idea: Only output the sufficient statistics, not all parameters of the network
(Santoro et al. MANN, Mishra et al. SNAIL)

ts
Jo Y The low-dimensional vector h_i
I represents contextual task information
= I [ 90
r T T 0
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Black-Box Architectures
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Black-Box Adaptation

ts
fo ?f
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4 - Optimization Based Meta-Learning



Formulation

Acquire ¢i through optimization

Meta-parameters 0 are
pre-trained

Model-Agnostic Meta Learning
(Finn et al., ICML17):

e Fine-tuning using pre-trained
parameters 0 and train data

e Meta-training includes the
loss between the results from
fine-tuning and test data

e Pre-trained parameters come
from publicly large available
datasets

max logp(D;"""|¢s) + logp(il0)

pre-trained parameters

¢+ 0 —aVyL(H, D'"™)

Training data for new task

. . train test
m@mZL(é’ aVgL(0, DIr4in) ptest)

task;



Optimization-Based Meta-Learning Algorithm

1. Sample a task Ti (or mini batch of tasks)
2. Sample disjoint sets Ditr and Dit from D;
3. Optimize ¢i— 0 -a V_6 L(O, Ditr)

4. Update 6 using V_{6} L(¢i, Dit)




yts _ f@ (Dfrain, ,’L'ts) Black-Box Adaptation

Optimization-Based Adaptation yteSt = fMAML (Dfrain, xteSt) — fqbz' (xteSt)

For a sufficient deep f, MAML can approximate any function of Ditr, xts (Finn and
Levine, ICLR 2018)

Assumptions:
e Non-zero learning rate
e Loss function gradient does not lose information about the label
e Data points in training set are unique



Probabilistic Version Of Optimization-Based Inference

[ PEE— mgiX log Hp(Dj 9) Empirical Bayes
®; | X, g
" ﬁQ_‘O.\.- = logU/p(Dj!¢j)p(¢j!9)d¢j
' J) ~ log | [ p(Dilds)p(,10)
J

Grant et al., ICLR"18
MAP Estimate

How to compute MAP estimate?
Gradient descent with early stopping train
(MAML): implicit Gaussian prior ¢ <0 —aVyL (07 D )



Probabilistic Version Of Optimization-Based Inference
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Other Ways to Compute MAP Estimate?

MAML implicit MAML

first-order MAML (this work)
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Challenges

How to choose architecture that is effective
for inner gradient-step?

Idea: Progressive neural architecture search
+ MAML (Kim et al., Auto-Meta, NIPS'2018)

e Finds highly non-standard architecture
with deep & narrow layers

e Different from architectures that work
well for standard supervised learning

LS AT R | B4 A A R |
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Challenges

Bi-level optimization can exhibit instabilities

Idea: Automatically learn inner vector learning
rate, tune outer learning rate

batch 1
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Alpha MAML: Adaptive Model-Agnostic Meta-Learning

Harkirat Singh Behl
Atihm Giines Baydin
Philip H.S. Torr
University of Oxford

HARKIRATGROBOTS.OX. AC.UK
GUNESGROBOTS.0X.AC.UK
PHSTGROBOTS.OX.AC.UK

Abstract

Model-agnostic meta-learning (MAML) is a meta-learning technique to train a model on a
multitude of learning tasks in a way that p the model for few-shot learning of new
k. The MAM algorithin perforuss well on fow-shot learniug problems in clasfication
regression, and fine-tuning of policy gradients in reinforcement learning, but comes with the
need for costly byperpa for training stability. We address this shortcoming
by introducin an extension to MAML, called Alpha MAML, to icorporate
hyperparameter adaptation scheme that eliminates the need to tune meta-learning and
learning rates. Our results with the Omniglot database demonstrate a substantial reduction
in the need to tune MAML training hyperparameters and improvement to training stability
with less sensitivity to hyperparameter choice.

ameter tun

-

. Introduction

Meta-learning —or “learning to learn”—concerns machine learning models that can improve
their learning quality by altering aspects of the learning process such as the model architecture,
optimization rule: arning hyperparameters (Thrun and Pratt, 2012;
Schmidhuber, 19 et al,, 2001). An important application of meta-learning is
few-shot learning problems (Vinyals et al., 2016; Behl et al., 2018), where one
with developing methods able to learn new concepts from one or only a few in:
et al., 201¢ ate-of-the-art model
(MAML) (Finn et al., 2017) method, which is a conceptually simple and general algorithm
that has been shown to outperform existing approaches in tasks including few-shot image
classification and few-shot adaptation in reinforcement learning (Antoniou et al., 2019).
MAML aims to solve the few-shot learning problem by being just few gradient descent
steps away from any new concepts, doing so by making the assumption that learning a new
concept will just involve few parameter updates (Algorithm 1). In other words, MAML is
based on learning an initial representation that can be efficiently fine-tuned for new ta
a few steps.

The generality of MAML comes with the difficul
achieve stable training in practice (Antonion ct al., 2019). MAML has two important
hyper-parameters, namely the learning rate a and the meta-learning rate 3, thus increas
any hyperparameter grid search computation by an order, and making it significantly
time and resource consuming than comparable methods. Another complication to this
problem is the fact that it is currently not established whether the technique can benefit
from a conventional decaying schedule for the inner learning rate a. Furthermore, a good
value of @ in MAML is even more important than for any conventional stochastic gradient
descent (SGD) optimization, because only a handful of samples are available in the few-shot
learning case. This has significant consequences, making it difficult to scale this algorithm

s concerned
wces (Lake
-agnostic meta-learning

In this paper we focus on the si

in

of choosing hyperparameters to

©2019 H.S. Behl, A.G. Baydin

d PHS, Torr

Behl et al., AlphaMAML,
ICML"19



Zintgraf et al., ICML'19

Challenges

Bi-level optimization can exhibit instabilities

Idea: Optimize only a subset of the
parameters in the inner loop
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Few-shot image recognition task




Challenges

Bi-level optimization can exhibit instabilities
Idea: Decouple inner learning rate, Batch-Norm statistics per-step

Omniglot 20-way 1-shot Strided Convolution MAML vs MAML+ +
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Challenges

Back-propagating through many inner gradient steps is compute- and
memory-intensive

Idea: Approximate d_¢i/d_6 as identity (Finn etl al. 1st-order MAML'17, Nichol et al.
Reptile'18)

=> Works for simple few-shot problems, but not for more complex problems

Idea: Derive meta-gradient using implicit function theorem (Rajeswaran et al. Implicit
MAM LI1 9) MAML first-order MAML implicit MAML

(this wark)
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Optimization-Based Inference

— meta-learning

9 ---- learning/adaptation ., gijeyel optimization
+ Positive inductive bias at the
V£3 start of meta-learning
+ Consistent procedure ->
V,C2 extrapolates better
\Vis Y, + Maximally expressive with
1 el 3 sufficiently deep network
Fa + Model-agnostic
5 TN - Requires 2nd-order
1 o (9; optimization

- Compute and/or memory
intensive



3 - Non-Parametric Meta-Learning



Why Non-Parametric?

e Inlow data regimes,
non-parametric
methods are simple,
work well

e Parametric during
meta-training

e Non-parametric during
meta-test




Non-Parametric Meta-Learning Algorithm

Sample a task Ti (or mini batch of tasks)
Sample disjoint sets Ditr and Dit from D
Compute yts = S{x_k, y_k € Dt} f_0 (xts, x_k) y_k
4. Update 6 using V_{0} L(yts, yts)

wn =

=> Task-specific parameters ¢ integrated out, hence
non-parametric



Koch et al., ICML'15

e Train a Siamese
network to predict
whether or not two
images are the
same class

e Meta-Training:

Binary classification

e Meta-Test: N-way
classification
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Vinyals et al., NIPS'16

e Can we match
meta-train and
meta-test?

e Nearest neighbor in
learned embedding
space

e Matching Networks:
Convolutional Encoder
+ Bi-Directional LSTM

~rtest

Yy




Snell et al., NIPS'1/

e Can we aggregate class
information to create a
prototypical embedding?

e D = Distance metric between
f ®and c_k

1
Ck — Dtrain Z f9 (ZIZ)
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softmax(—D(fg(x),cr))

i softmax(—D(fop(x),cr))



Challenge

Sung et al.,
RelationNet (CVPR'18)

What if we need to reason about more complex
relationships between data points?

Allen et al., IMP
(ICML'19)

Infinite Mixture Prototypes
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Garcia and
Bruna., GraphNet
(ICLR'18)
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b - Takeaways



Takeaways (1/3)

Black-Box Meta-Learning

Complete expressive power

Not consistent
Easy to combine with a variety of learning problems

Data-inefficient

e



Takeaways (2/3)

Optimization-Based Meta-Learning

Consistent via gradient descent

Expressive for very deep models

Positive inductive bias at the start of meta-learning
Model-agnostic

Compute and memory Intensive

ik wh =




Takeaways (3/3)

Non-Parametric Meta-Learning

1. Expressive for most network architectures
2. Consistent under certain conditions

3. Computationally fast and easy to optimize
4. Harder to generalize and scale



Thank You!

Link to Blog Post: https://jameskle.com/writes/meta-learning-is-all-you-need
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