
MetaRec: Meta-Learning Meets Recommendation Systems

by

James Le

Submitted to the
B. Thomas Golisano College of Computing and Information Sciences

Department of Computer Science
in partial fulfillment of the requirements for the

Master of Science Degree
at the Rochester Institute of Technology

Abstract

Artificial neural networks (ANNs) have recently received increasing atten-
tion as powerful modeling tools to improve the performance of recommen-
dation systems. Meta-learning, on the other hand, is a paradigm that has
re-surged in popularity within the broader machine learning community over
the past several years. In this thesis, we will explore the intersection of these
two domains and work on developing methods for integrating meta-learning
to design more accurate and flexible recommendation systems.

In the present work, we propose a meta-learning framework for the de-
sign of collaborative filtering methods in recommendation systems, drawing
from ideas, models, and solutions from modern approaches in both the meta-
learning and recommendation system literature, applying them to recommen-
dation tasks to obtain improved generalization performance.

Our proposed framework, MetaRec, includes and unifies the main state-
of-the-art models in recommendation systems, extending them to be flexibly
configured and efficiently operate with limited data. We empirically test the
architectures created under our MetaRec framework on several recommenda-
tion benchmark datasets using a plethora of evaluation metrics and find that
by taking a meta-learning approach to the collaborative filtering problem, we
observe notable gains in predictive performance.

i

Acknowledgments

A Master’s Thesis track is a long journey through unknown territories, soaring
peaks, and deep as well as dark troughs. I am thankful for the many people I
got to meet and who accompanied me along the way. First, I’d like to thank
my thesis advisor Alexander Ororbia II. The freedom you gave me to pursue
my interests and follow my curiosity has made all the difference. Thank you
for your support and for fostering a productive research environment within
the Neural Adaptive Computing (NAC) lab, even among uncertain times and
virtual working conditions this past year.

I am grateful for the support from my family and friends at home in Viet-
nam and here in the United States. Special thanks to my dad Nam, my mom
Hang, and my uncle Duc.

I am very fortunate to have met mentors along the way who took a chance
on me and helped me grow. Special thanks goes to Richard Zanibbi and
Christopher Kanan – the classes that I took taught by them enabled me to
cultivate valuable research skills. Also big thanks to past and present col-
leagues at ZestAI, Limbik, Full-Stack Deep Learning, and SnorkelAI – where
I learned how machine learning works and is applied in the real world.

I also want to thank my labmates in the NAC lab. In particular, I am
greatly appreciative of the discussions I had with Michael Peechatt, Hitesh
Vidaiya, and Ankur Mali – my collaboration with them on the meta-learning
survey planted the seed for several significant ideas in this thesis.

I am grateful for all the amazing people that I got the chance to know at
numerous in-person and virtual events. I am looking forward to seeing you all
at future ones.

I would like to thank Alex Ororbia, Richard Zanibbi, and Christopher
Homan for feedback on drafts of this thesis. Lastly, I would like to express
my gratitude to the Department of Computer Science at Rochester Institute
of Technology for a wonderful two and a half year long journey of academic
pursuit.

ii

Contents

1 Introduction 1
1.1 Overview . 1

1.1.1 Functions . 1
1.1.2 Applications . 3
1.1.3 Current Challenges . 3

1.2 Research Goals . 4
1.3 Thesis Outline . 5

2 Recommendation Systems 7
2.1 Problem Formulation . 7

2.1.1 Content-Based Filtering 10
2.1.2 Collaborative Filtering 10
2.1.3 Hybrid Approaches . 12

2.2 Deep Learning Approaches . 12
2.2.1 Artificial Neural Network Architectures 12
2.2.2 Solutions For Existing Challenges 13
2.2.3 Research Directions . 16

3 Meta Learning 18
3.1 Meta Learning Overview . 18
3.2 Meta Learning Formulation . 20
3.3 Black-Box Meta-Learning . 22

3.3.1 Formulation . 22
3.3.2 Challenges . 23
3.3.3 Architectures . 24

3.4 Optimization-Based Meta-Learning 25
3.4.1 Formulation . 25
3.4.2 Architectures . 27
3.4.3 Challenges . 29

iii

CONTENTS iv

3.5 Non-Parametric Meta-Learning 30
3.5.1 Formulation . 31
3.5.2 Architectures . 31
3.5.3 Challenges . 32

4 Literature Review 34
4.1 Matrix Factorization For Recommendation 34
4.2 Multilayer Perceptrons For Recommendation 35
4.3 Autoencoders For Recommendation 38
4.4 Meta Learning For Recommendation 39

5 MetaRec 44
5.1 The Automatic Recommendation Task 45
5.2 The Local Updates . 45
5.3 Global Update . 45

6 Experiments 47
6.1 The Dataset . 47
6.2 Matrix Factorization Experiments 48

6.2.1 Standard Matrix Factorization 48
6.2.2 Matrix Factorization with Biases 50
6.2.3 Matrix Factorization with Side Features 50
6.2.4 Matrix Factorization with Temporal Features 51
6.2.5 Factorization Machines 51
6.2.6 Matrix Factorization with a Mixture of Tastes 52
6.2.7 Variational Matrix Factorization 53
6.2.8 MetaRec Matrix Factorization 53
6.2.9 Experimental Results 55

6.3 Multi-Layer Perceptron Experiments 57
6.3.1 Wide and Deep Learning (WideDeep) 57
6.3.2 The Deep Factorization Machine (DeepFM) 58
6.3.3 The Extreme Deep Factorization Machine (xDeepFM) . 60
6.3.4 The Neural Factorization Machine (NeuralFM) 61
6.3.5 Neural Collaborative Filtering (NeuralCF) 63
6.3.6 The MetaRec Multi-Layer Perceptron (MetaRec-MLP) . 64
6.3.7 Experimental Results 66

6.4 Autoencoder Experiments . 68
6.4.1 Collaborative Denoising Auto-encoder 68
6.4.2 Multinomial Variational Auto-encoder 70
6.4.3 Sequential Variational Auto-encoder 73

CONTENTS v

6.4.4 Embarrassingly Shallow Auto-encoder 75
6.4.5 MetaRec Autoencoder 76
6.4.6 Experimental Results 79

7 Conclusions 83
7.1 Summary and Contributions . 83
7.2 Discussion and Future Work . 84

7.2.1 More Complex Base Models and Better MAML Training
for MetaRec . 84

7.2.2 Other Meta-Learning Schemes For Recommendations . 85
7.2.3 Addressing The Scalability and Sparsity Challenges . . 85

Appendices 104

A Appendix 105
A.1 Dataset Details . 105
A.2 Matrix Factorization Methods 107

A.2.1 Code . 107
A.2.2 Parameter Configuration 107

A.3 Multi-Layer Perceptron Methods 108
A.3.1 Code . 108
A.3.2 Parameter Configuration 109

A.4 Autoencoders Methods . 109
A.4.1 Code . 109
A.4.2 Parameter Configuration 110

List of Figures

1.1 Example of Spotify Discover Weekly. 2

2.1 The recommendation problem as a rating prediction task [154]. 8
2.2 Collaborative filtering versus Content-Based filtering. 9

3.1 The meta-learning problem setup described in [116]. 21
3.2 The memory-augmented network as described in [126]. 24
3.3 Diagram of the MAML method as described in [36]. 26
3.4 The probabilistic graphical model for which MAML provides

an inference procedure, as described in [43]. 27
3.5 The MetaOptNet approach as described in [81]. 28
3.6 The Deep Meta Learning as described in [175]. 29
3.7 Prototpyical Networks as described in [136] 31

4.1 A typical matrix factorization process (diagram adapated from
[45]). 35

4.2 A typical multi-layer perceptron architecture (diagram taken
from [99]). 36

4.3 A typical Autoencoder architecture (diagram taken from [98]). 38
4.4 The MeLU architecture proposed in [80]. 40
4.5 The MAMO architecture proposed in [31]. 42

5.1 Meta-Learning scheme for MetaRec. 46

6.1 A graphical depiction of MF (diagram taken from [18]). 49
6.2 MetaRec-MF uses a matrix factorization base model and trains

it according to our MAML process defined in Chapter 5. 54
6.3 The spectrum of “wide and deep models” proposed in [27]. . . 58
6.4 The wide and deep architecture of DeepFM in [48]. 59
6.5 The architecture of xDeepFM in [85]. 60

vi

LIST OF FIGURES vii

6.6 The architecture of the NeuralFM in [53]. 61
6.7 The architecture of the NeuralCF in [54]. 63
6.8 MetaRec-MLP uses an MLP base model, inspired by NeuralCF

[54], and trains the full system acccording to the MAML process. 65
6.9 The basic CDAE architecture in [166]. 69
6.10 The MultVAE architecture in [86]. 71
6.11 The sample SVAE architecture in [123]. 74
6.12 The item self-similarity layer in the ESAE architecture in [138]. 75
6.13 The MAML setup in MetaRec-AE. We gradually update the

encoder and decoder parameters θ using φ so that they can be
adapted to any recommendation task with a few SGD steps. . . 78

A.1 MovieLens1M movie titles in a word cloud 105
A.2 MovieLens1M rating distribution 106
A.3 MovieLens1M movie genres in a word cloud 106
A.4 MovieLens1M subset of movies with 5-star ratings 107

List of Tables

6.1 MovieLens1M Dataset Characteristics 48
6.2 Matrix factorization experiments (lower MAE & MSE

values are better). 56
6.3 Results For Our Multi-Layer Perceptron Experiments

(higher AUC values are better). 67
6.4 Results For Our Autoencoder Experiments (higher

Precision, Recall, and NDCG values are better). . . . 81

viii

Chapter 1

Introduction

1.1 Overview

With the explosive growth of digital information over the past decade, con-
sumers often face the dilemma of choosing among the abundance of choices.
As a result, automatic recommendations are essential for facilitating a better
user experience and reducing information overload. Overall, recommendation
systems have played an indispensable role in various information filtering and
data mining systems to boost business value and facilitate decision-making
processes. There has been a great deal of work done in recent years, in both
industrial and academic settings, to craft newer, more robust approaches to
recommendation systems.

There are various techniques to design these systems, ranging from the
simple (e.g., based only on other rated items from the same user) to the
extremely complex. Complex recommendation systems leverage a variety of
different data sources and often utilize non-linear learning methods. Thus, the
recommendation task provides an excellent problem space to apply machine
learning methodology. As users continue to consume content and yield more
data, we can build machine learning-based systems to exploit this data to
provide better and better recommendations. This thesis’s research goal is to
develop learning models and methods that can effectively offer recommenda-
tions to users, tailoring to explicit and implicit preferences that can generalize
to other, previously unseen users.

1.1.1 Functions

There are many reasons why recommendation systems would be deployed in
the business world. We highlight four essential functions:

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Example of Spotify Discover Weekly.

• To increase the number of items sold : In general, from a business per-
spective, the primary goal for using recommendation systems is to in-
crease the conversion rate - which is the number of users that accept
the recommendation and consume an item, compared to the number of
visitors that browse through the information.

• To sell more diverse items: In a music streaming service such as Spotify,
the company is interested in displaying all of the music from all types
of artists, not just the popular ones. This would be difficult to do with-
out a recommendation system, given that Spotify cannot afford the risk
of advertising music that is not likely to suit a particular user’s taste.
Therefore, a recommendation system can suggest unpopular music to
the right users (Figure 1.1).

• To increase user satisfaction: A well-designed recommendation system
can improve the user experience within the application. The user will
find the recommendations to be interesting, relevant, and enjoyable.
This leads to higher (overall) satisfaction.

• To better capture user’s needs: A good recommendation system describes
user preferences in detail, either explicitly or implicitly. The business
may then decide to reuse this knowledge for many other goals.

CHAPTER 1. INTRODUCTION 3

1.1.2 Applications

Recommendation systems research is generally conducted with a strong em-
phasis on practical and commercial applications. The application domain sig-
nificantly impacts the type of algorithmic approach that should be taken. [100]
provides a taxonomy of recommendation systems and classifies their existing
applications to specific domains:

• Entertainment - recommendations for movies (Netflix), music (Spotify,
Pandora), and mobile apps (Apple Store, Android Store).

• Content - personalized newspapers (The New York Times, The Wall
Street Journal), recommendation for images (Pinterest), recommenda-
tions of Web pages (Pocket), e-learning applications (Coursera), and
e-mail filters (Gmail).

• E-commerce - recommendations for consumers of products to buy such
as books (Amazon), beauty supplies (Birchbox), and clothes (Stitch Fix).

• Services - recommendations of travel services (Skyscanner), experts for
consultation (StyleSeat, ClassPass), houses to rent (Zillow), or match-
making services (Tinder, Bumble).

1.1.3 Current Challenges

While the task of automatic recommendation is not new, there remain many
challenges that drive research in modern-day systems, especially for collabo-
rative filtering ones that aim to find user-item interactions to facilitate recom-
mendations. The three of interest to this thesis are:

• Scalability: Real-world recommendation systems are deployed in a dy-
namic, interactive environment - user and item data come in and out
rapidly. It is crucial to address the computing requirements [131] and
training/inference time [87] required to efficiently process this data.

• Sparsity: The sparsity problem is quite prominent in collaborative fil-
tering systems since only a small number of users provide the ratings,
and only a small number of items have the ratings. This is also known
as the “cold-start problem” [17, 141], which prevents recommendation
systems from generating meaningful predictions due to limited data.

• Accuracy: Recommendation systems need to provide a high prediction
accuracy level to ensure the quality that users often demand. In research,

CHAPTER 1. INTRODUCTION 4

accuracy is usually evaluated/investigated by rating prediction and item
ranking [131].

In this thesis, we will address the above challenges by reframing the prob-
lem of recommendation system training. Solutions to this problem typically
follow a supervised learning format that requires extensive guidance from the
system designer in providing necessary target behavior. In contrast, we ar-
gue that adopting an unconventional meta-learning (“learning how to learn”)
approach can be far more fruitful.

Specifically, we pay attention to the accuracy challenge, as it is the most
well-defined one in existing recommendation systems literature. To this end,
we develop a novel framework that can meta-learn across preferences for differ-
ent users for a variety of base (collaborative filtering) models. We demonstrate
that our models using this framework outperform models that do not possess
meta-learning capability across several accuracy metrics.

1.2 Research Goals

This thesis studies the problem of learning (distributed) representations that
can learn fast and efficiently with few training samples using both linear and
neural-based models crafted for the recommendation task, specifically focusing
on collaborative filtering. The central hypothesis of this thesis is the following:

Collaborative filtering methods that meta-learn information from related
tasks generalize better than methods that do not use this information across a
wide range of tasks in terms of accuracy.

As a result, the research goals of this work are two-fold. First, we aim to
identify and analyze the current trends in several sub-domains relevant to this
thesis. Specifically, we will consider the following:

• Meta-Learning: we will study the different families under which meta-
learning algorithms are categorized. More specifically, we will provide
a mathematical formulation of each and include examples of relevant
different architectures. We will also identify existing challenges with
each family.

• Matrix Factorization for Recommendation: we will thoroughly
cover the inner workings of matrix factorization, the canonical and pop-
ular linear model for collaborative filtering. We will also examine ways
to strengthen its capacity.

CHAPTER 1. INTRODUCTION 5

• Multi-Layer Perceptron for Recommendation: we dive deep into
various state-of-the-art recommendation architectures that utilize a multi-
layer perceptron as their backbone.

• Autoencoders for Recommendation: we will explore the various
advances in the formalization of the autoencoder (and its variants) for
the task of recommendation.

Second, this thesis will provide the initial steps towards unifying views
and ideas in both neural-based automatic recommendation and meta-learning
methodology, identifying the essential elements and principles upon which
a deep meta-learning framework for recommendation systems can be built.
Concretely, we present two original contributions:

• The adaptation of optimization-based meta-learning to the construction
of recommendation systems by bridging the principles proposed in meta-
learning with key concepts involved in collaborative filtering.

• The design of a neural-based, meta-learning framework for recommen-
dation systems that provides a flexible configuration taking into account
both linear and non-linear models.

1.3 Thesis Outline

The rest of the thesis is organized as follows:

• Chapter 2 provides an overview of background information that is rele-
vant to understand the contents of this document. We formally define
the recommendation task (Section 2.1), including content-based filtering
and collaborative filtering, and discuss artificial neural network-based
methods and their use-cases for the task (Section 2.2).

• Chapter 3 provides a comprehensive study of meta-learning. Three
broad meta-learning paradigms are examined: black-box meta-learning
(Section 3.3), optimization-based meta-learning (Section 3.4), and non-
parametric meta-learning (Section 3.5).

• Chapter 4 presents an extensive look at state-of-the-art recommenda-
tion systems. Four general areas are identified: matrix-factorization-
based systems (Section 4.1), multi-layer-perceptron-based systems (Sec-
tion 4.2), autoencoder-based systems (Section 4.3), and meta-learning-
based systems (Section 4.4).

CHAPTER 1. INTRODUCTION 6

• Chapter 5 details our proposed MetaRec framework, which is based on
an optimization-based meta-learning algorithm and allows for different
choices of base recommendation models.

• Chapter 6 presents the results of our evaluation regarding MetaRec’s
effectiveness. Three sets of experiments were conducted using different
base models: a matrix-factorization variant (Section 6.2), a multi-layer-
perceptron variant (Section 6.3), and an autoencoder variant (Section
6.4).

• Chapter 7 summarizes the work and contributions, discusses possible
improvements, and outlines potential future work and directions.

Chapter 2

Recommendation Systems

2.1 Problem Formulation

In recommendation systems, an item’s utility is usually represented by a rating
(see Figure 2.1), which indicates how much a particular user liked a specific
item. In general, utility can be an arbitrary function and depends on the
application’s goal. For example, an item will be more useful if it increases user
satisfaction or better captures a user’s needs. Depending on the application,
the utility F can either be specified by the user (as is often done in the context
of user-defined ratings) or is computed by the application (as is the case for a
profit-based utility function).

Bearing utility in mind, formally, the recommendation problem can be
formulated in the following manner:

• Let U be the set of all users and let I be the set of all items. Both
of these spaces can be very large - up to potentially millions of items,
depending on consumer service being provided.

• Let F be the utility function that measures the relevance of item i to
user u as follows: f : U × I → R, where R is an ordered set of user
preferences for the items.

• For each user u ∈ U , we want to choose an item i ∈ I that maximizes
the user’s utility.

Mathematically, given the above notation and setting, we are interested in
solving the following optimization problem:

∀u ∈ U, is = arg max
i∈I

F (u, i) (2.1)

7

CHAPTER 2. RECOMMENDATION SYSTEMS 8

Figure 2.1: The recommendation problem as a rating prediction task [154].

where each element of the user space U can be defined with a profile that
includes various user characteristics, such as user ID, age, gender, income
etc. Similarly, each element of the item space I is defined with a (particular)
set of characteristics. For example, in a music recommendation application,
e.g., Spotify, Soundcloud, Pandora, where I is a collection of songs, each
song can be represented not only by its ID but also by its title, genre, artist,
year of release, etc. Alternatively, in a travel recommendation application,
e.g., Expedia, Booking, Airbnb, where I is a collection of travel options, each
option can be represented by its location, price, local activities, etc.

The central problem faced by any recommendation system is that the util-
ity F is usually not defined over the whole U × I space – it is, at best, only
defined on a subset of this space. This means that F needs to be extrapolated
to the whole space U × I. In recommendation systems, the utility is typically
represented by (user) ratings and is initially defined only on the items that
have been previously rated by (existing) users. For example, in a book rec-
ommendation application like Goodreads, users initially rate some subsets of
books that they have already read. The application’s goal is to predict the
ratings of the non-rated book-user combinations and display the appropriate
recommendations based on these predictions.

There are two ways to extrapolate from known to unknown ratings. The
first specifies heuristics that define the utility function and empirically vali-
dates the function’s performance. The second estimates the utility function
that optimizes specific performance criteria using a proxy function such as
mean squared error or cross-entropy loss.

Once we are able to estimate the unknown ratings, we can make the actual

CHAPTER 2. RECOMMENDATION SYSTEMS 9

Figure 2.2: Collaborative filtering versus Content-Based filtering.

recommendations of an item to a user by choosing the highest rating among
all the estimated ratings for that particular user. Otherwise, we can also
recommend the K best items to a user or a set of K users to an item.

Generally speaking, recommendation systems are categorized into one of
three categories [6] (the first two of which are depicted in Figure 2.2):

• Content-Based Filtering: The system recommends new items with
similar characteristics to existing items that the user has preferred in
the past. Hence, the quality of the recommendations depends entirely
on the quality of the item content.

• Collaborative Filtering: The system recommend items to new users
with similar tastes to existing users in the database. Hence, the quality
of the recommendations depends on the quality of the user preferences.

• Hybrid Approach: A hybrid system simply combines both content-
based and collaborative filtering to generate recommendations.

CHAPTER 2. RECOMMENDATION SYSTEMS 10

2.1.1 Content-Based Filtering

In content-based recommendation systems, the utility function F (u, i) of item
i for user u is estimated based on the utilities F (u, ik) assigned by user u for
each item ik ∈ I that is similar to item i. For instance, in a music recommen-
dation engine, in order to recommend new songs to user u, a content-based
recommendation approach tries to understand the similarities among the songs
that user u has listened to frequently in the past. Then, only the songs that
have a high degree of similarity to whatever the user’s preferences are would
be subsequently recommended.

While useful, as was observed in [6] and [132], content-based approaches
exhibit several important limitations:

• Limited Analysis: Content-based approaches are limited by the features
that are explicitly associated with the items recommended. Hence, to
have a sufficient set of features, the content must either be: 1) in a format
that can be processed automatically, or 2) can be assigned to items
manually. In the first scenario, it isn’t easy to automatically extract
features in unstructured data such as images and audio. In the second
scenario, it is often impractical to assign attributes by hand because of
limited computational and human resources.

• Homogeneity : When the system can only recommend items that score
highly against a user’s profile, the user is restricted to only items similar
to those already rated. In other words, content-based approaches fail
to provide diverse recommendations. Ideally, the user should be pre-
sented with a wide range of options and not just a homogeneous set of
alternatives.

• New User Recommendations: A user has to rate a sufficient number of
items before a content-based recommendation system can understand
his/her preferences and present him/her with trustworthy items. Thus,
a new user with no prior ratings will not get accurate recommendations.

2.1.2 Collaborative Filtering

In collaborative filtering recommendation systems, we attempt to predict the
utility of items for a particular user based on the items previously rated by
other users. More formally, the utility function F (u, i) of item i for user u
is estimated based on the utilities F (uj , i) assigned to item i by those users
uj ∈ U who are similar to user u.

CHAPTER 2. RECOMMENDATION SYSTEMS 11

For instance, in the context of a book recommendation application, in
order to recommend books to user u, the collaborative filtering system first
finds the “peers” of user u, or other users with similar tastes in books (who
rate the same books similarly). Then, only the books that are most liked by
the peers of user u would be recommended.

According to [19], algorithms for collaborative filtering approaches can be
divided into two main classes: memory-based and model-based. Memory-based
algorithms are heuristics that predict ratings based on the entire collection of
previously rated items by the system’s users. In contrast to memory-based
methods, model-based algorithms use a collection of ratings to learn a model
from the underlying data using statistical and machine learning techniques,
which, after fit to data, are then used to predict ratings. A method that com-
bines both approaches was proposed in [11], where it was empirically demon-
strated that the use of this mixed approach provided better recommendations
than either pure memory-based and pure model-based techniques.

Pure collaborative recommendation systems also have particular limita-
tions:

• New User Recommendations: This is the same problem as with content-
based approaches. To make accurate recommendations, the system must
first learn the user’s preferences from the previous ratings.

• New Item Recommendations: New items are regularly put into the sys-
tem. Since collaborative filtering approaches rely solely on users’ prefer-
ences to make recommendations, a new item will not be recommended
until it is rated by a sufficient number of users.

• Sparsity : In any system, the number of ratings already obtained is usu-
ally small compared to the number of ratings that need to be predicted.
Effective prediction of ratings from a small number of examples is quite
essential. Additionally, the success of collaborative filtering depends on
the availability of a critical mass of users. For instance, there may be
many products purchased by only a few people in a product recom-
mendation system, which means that these would be recommended very
rarely, even if those few users gave these items high ratings. Further-
more, for the user whose tastes are unusual compared to the rest of
the population, there will not be any other significantly similar users,
yielding poor recommendations [6].

CHAPTER 2. RECOMMENDATION SYSTEMS 12

2.1.3 Hybrid Approaches

A hybrid system combines content-based and collaborative filtering methods,
side-stepping the limitations inherent to each. Among the many ways one
could design a hybrid system, we highlight the following methods:

• [28, 107] implement collaborative filtering and content-based filtering
separately, then combine their (final) predictions. The final combination
can happen via a linear combination or a voting function.

• [6, 42, 96, 107] keep track of the item content during the design of a
collaborative filtering system. This helps solve the cold-start issue, the
biggest bottleneck of collaborative filtering.

• [137] reduces the dimension of the user data matrix during the design of
a content-based filtering system. This helps solve the scalability issue,
the biggest bottleneck of content-based filtering.

• [3,7,21,110,128] unify the characteristics of both content-based and col-
laborative filtering through rule-based, probabilistic-based, and knowledge-
based techniques/methods.

2.2 Deep Learning Approaches

Recently, deep learning, or machine learning based on artificial neural networks
(ANNs) that contain many layers of nonlinear processing, has seen increased
adoption as a promising solution to a variety of problems in multiple com-
puter science sub-fields (e.g., computer vision [72], language modeling [103],
speech recognition [44], and data mining). In addition to the impressive results
achieved by ANNs on several benchmarks, deep learning solutions have helped
to form a common machine learning foundation across several disciplines as
well as a shared vocabulary that bridge these fields together. Concerning the
recommendation task, they have overcome conventional models’ obstacles and
achieved high recommendation quality.

2.2.1 Artificial Neural Network Architectures

While the survey [169] does a good job of summarizing the most prominent
ANN architectures that are relevant in the context of recommendation sys-
tems, we provide a brief summary/explanation of the methods directly related
to this thesis:

CHAPTER 2. RECOMMENDATION SYSTEMS 13

• A multi-layer perceptron (MLP) is an ANN with multiple hidden layers.
It can be trained with back-propagation of errors [25,121] (or backprop),
a well-known algorithm for calculating the gradients of a cost function
with respect to model parameters. One heuristic that has emerged from
recent work in deep learning is that adding more hidden layers combined
with more efficient parameter initialization methods can lead to better
model out-of-sample performance (generalization). This type of ANN
will be discussed further in section 4.2.

• An autoencoder [60] is an unsupervised ANN, where the input layer
and the output layer are the same – the bottleneck (hidden) layer of
an autoencoder learns to extract a low-dimensional representation of
the input data. This type of network will also be discussed further in
section 4.3.

• A Boltzmann machine [57] is a neural network with symmetrically con-
nected layers that works best with binary vectors. Recently, a particular
design of a Boltzmann machine, also known as the restricted Boltzmann
machine (RBM) [59], includes hidden units and visible units that are
not (laterally) connected to each other yielding a bi-partite graph that
facilitates efficient inference. Multiple RBMs can be stacked and trained
greedily to form a deep belief network (DBN) [58] to learn complex,
increasingly abstract representations of input data.

• A convolutional neural network (CNN) [79] is a specialized type of ANN
that is meant to handle data with a spatial topology, such as images and
videos. A typical CNN consists of multiple, stacked convolutional layers
(which convolve their input with a set of filters), pooling layers (which
decrease the size of their inputs with a fixed down-sampling transforma-
tion), and fully-connected layers (which compute the logits of different
classes before a softmax transformation is applied to get predictive class
probabilities).

• A recurrent neural network (RNN) [143] is another specific type of neural
network that handles temporal data. A typical RNN utilizes a recurrence
formula to process a sequence of vectors at the input, at the output, or
either serially/in parallel.

2.2.2 Solutions For Existing Challenges

The first well-known study that uses deep learning in the context of recom-
mendation systems dated back to 2007, which employed RBMs for rating

CHAPTER 2. RECOMMENDATION SYSTEMS 14

prediction [125]. 2015 marked the signs of the deep learning “boom” for rec-
ommendations, where a couple of seminal papers laid the groundwork for
current research directions. 2016 saw a steep increase: the creation of the
“Deep Learning For RecSys” workshop series, the massive increase in deep
learning papers at conferences such as RecSys, KDD, SIGIR, and the forming
of distinct research directions in recommendation research by the end of the
year (e.g., deep collaborative filtering, feature extraction from content, learn-
ing item embeddings, session-based recommendations, etc.). Since 2017, we
have seen continued, promising progress made along these research directions,
alongside more advanced ideas from deep learning that have yet to be applied.

We next review several relevant studies to see how they tackle the chal-
lenges (of Section 1.1.3) for the recommendation task.

Handling Scalability: In order to deal with the challenge of scalability,
ANN models have been used to extract low-dimensional vectors from high-
dimensional user preferences for known items. Truyen et al. [150] used RBMs
to engineer latent features of users and items to generate final (recommenda-
tion) predictions. Elkahky et al. [34] experimented with different dimension-
ality reduction techniques applied to raw input features, which included using
an MLP/feedforward network to reduce the feature dimensions. They finally
selected only the most relevant features (in the reduced space) and finally
applied a clustering procedure to group similar features together.

Another way to tackle scalability is to look at it from a systems perspec-
tive. Interestingly, Louppe [89] used parallel computing to speed up the model
training and inference processes. Serra and Karatzoglou [130] applied com-
pression techniques to transform high-dimensional data into embedding vec-
tors before fitting recommendation models, which led to a drastic reduction
in the space and computational time during model optimization. Tang and
Wang [147] utilized knowledge distillation to train a small “student” model
(which was extremely efficient in terms of storage and computation time) that
could absorb knowledge from a large “teacher” model (which would be highly
expressive and generalize well).

Handling Sparsity: In order to deal with the challenge of sparsity, deep
ANNs have been used in an automatic feature engineering process that inte-
grates content-based features (user and item “side information”) directly into
a neural-based recommendation algorithm. Strub et al. [139] utilized a de-
noising autoencoder architecture that takes into account side information as
inputs. Gunawardana and Meek [47] used an RBM architecture that also

CHAPTER 2. RECOMMENDATION SYSTEMS 15

uses side information as inputs. Kim et al. [64] employed a CNN architecture
to collect image features for a tag-aware recommendation system. Tuan and
Phuong [151] crafted a 3D-CNN model that collects users’ browser activities
to produce a session-based recommendation system.

Another way to tackle sparsity is to use an ANN to extract high-level rep-
resentations of users and items based on a preference matrix as well as side
information, and then use them with matrix factorization to conduct collab-
orative filtering. Wang et al. [162] presented the collaborative deep learning
framework based on a Bayesian stacked denoising autoencoder that is capable
of learning rich, high-level user and item representations. Li et al. [82] came
up with a marginalized denoising autoencoder that learns from user’s side in-
formation and subsequently combines the learning with a matrix factorization
process. Oord et al. [153] designed a CNN that extracts high-level audio signal
features to be used in a content-based recommendation framework. Wang and
Wang [163] devised a hybrid method that combines probabilistic matrix fac-
torization with features learned from a deep belief network. Wang et al. [161]
developed a relational probabilistic stacked denoising autoencoder that can
extract side information – this was also finally combined with matrix factor-
ization. Shin et al. [134] adapted a hybrid of word2vec model (such as skip-
gram or continuous bag-of-words) and a CNN – the model was used to extract
text and image features which were then integrated into a matrix factoriza-
tion process for blog recommendation. Shen et al. [133] showcased a CNN that
extracts latent factors for educational-technology (ed-tech) recommendation.
Ying et al. [167] birthed a stacked denoising autoencoder that extracts “deep
features” from side information, but these representations were ultimately used
in a Bayesian probabilistic framework for pair-wise ranking model.

Handling Accuracy: In order to deal with the challenge of accuracy, deep
ANNs have been used to extract hidden features / latent factors to improve rec-
ommendation prediction. Sedhain et al. [129] employed autoencoders inside a
framework called “AutoRec” to predict missing ratings. Zheng et al. [174] used
the Neural Autoregressive Distribution Estimation (NADE) method in the col-
laborative filtering setting by sharing the model parameters across different
ratings. Wu et al. [166] devised the collaborative denoising autoencoder to
reconstruct the dense form of user preferences – this approach reached state-
of-the-art performance for top-N recommendation task. Unger et al. [152]
combined PCA and autoencoders to capture latent features from sensor data
for a context-aware system. Deng et al. [30] used autoencoders to capture
latent features from user and item data for a trust-aware system.

CHAPTER 2. RECOMMENDATION SYSTEMS 16

Another way to tackle accuracy is to use ANNs to jointly combine informa-
tion from different data sources/modalities. Truyen et al. [150] developed an
RBM-based scheme to jointly model user-based and item-based correlations
in tandem with Singular Value Decomposition. Wang et al. [161] used a prob-
abilistic stacked denoising autoencoder to capture the relation between items
for a tag-aware system. For a group-based recommendation task, Hu et al. [62]
constructed a deep architecture built using a collection of deep belief networks
and dual-wing RBMs to extract collective features from users/members and
combined these with group preferences.

2.2.3 Research Directions

Across several surveys written in recent years [8, 169], here are some of the
key, outstanding open research directions:

• When working with large-scale datasets in the real world, optimizing
the exponential growth of model parameters is challenging. A model
that works well with small, offline datasets cannot be guaranteed to
perform well on large online datasets. Although the solutions (discussed
in Section 2.2.2) meant to address scalability are promising, further
studies are crucially needed that focus on a large-scale evaluation of
industry-level recommendation systems [40,50,106,127].

• User preferences and tastes evolve. To account for these temporal dy-
namics in a session-based recommendation, more advanced sequential
models are needed. RNNs have proven to be very effective [24, 55, 56,
112,122,146,165] but can certainly be improved with regard to accuracy
metrics, especially in addressing their difficulties in capturing long-term
dependencies in sequential data.

• The quality of a recommendation system depends on the quality of the
data. As privacy becomes more important in the technology world,
there is a need to design solutions that will sensibly utilize user data.
Therefore, building models on privately-collected, centrally-stored, or
widely-distributed data is fundamental for further near-term progress to
be made [5, 14,22,74,95,109,115,135,164].

• In the early stage of a recommendation process, the users are likely to
explore new and diverse directions. In these cases, the recommendation
system can be utilized as a knowledge discovery tool. Many research
studies [93,94,145] have attempted to characterize the nature of diver-
sity - examining diversity among different recommendation sessions or

CHAPTER 2. RECOMMENDATION SYSTEMS 17

within a single session – and have explored how to optimize the objec-
tives of diversity and accuracy jointly.

• Cross-domain recommendation systems can mediate user data thanks
to the knowledge acquired across different systems and application do-
mains [12, 13, 35, 63, 68, 105]. One can consider the cross-domain rec-
ommendation to be very similar to ”transfer learning” in deep ANNs -
an agent must leverage the knowledge learned from one domain to im-
prove the learning for another domain. This direction is promising but
is largely an open problem for automatic recommendation to this day.

Chapter 3

Meta Learning

3.1 Meta Learning Overview

As a result of many advancements in algorithms and computing hardware in
the past decade, combined with an ever increasingly deluge of data, deep ar-
tificial neural networks (ANNs) have allowed us to process unstructured data
(such as images, text, audio, video, etc.) without the need to engineer fea-
tures by hand. Empirical research has shown that ANNs generalize better (to
unseen test examples) if we feed them large and diverse inputs. For example,
Transformers [156] such as GPT-2 [113] and GPT-3 [20] have made massive
headlines in the natural language processing research community in the last
few years due to their broad applicability across various tasks. However, there
are problems with using ANNs in real-world settings. Some of the central
issues include:

• Large datasets are unavailable: This issue is common in many do-
mains ranging from classification of rare diseases to translation of rare
languages. In these scenarios, it is clearly impractical to learn from
scratch for each task given the dearth of data.

• Data has a long tail: This issue can easily break the standard machine
learning framework/pipeline. For example, in the self-driving car setting,
an autonomous vehicle can be trained to handle common situations very
well, but the agent often struggles with uncommon situations (such as
people jay-walking, animals crossing, traffic lines not working).

• Learning a new task without training from scratch is difficult:
Human agents are known to do this quite easily by leveraging prior expe-
rience/knowledge when faced with a new task. For example, if ones know

18

CHAPTER 3. META LEARNING 19

some Spanish, then it would be less difficult to learn Italian given that
these two languages are quite similar linguistically (they share linguistic
roots in Latin).

To combat the issues above, one promising direction to explore is that of
meta-learning, or the process of “learning how to learn”. The rest of this
chapter looks into the evolution of meta-learning in more detail, which we
also previously discussed in our published article [78]. In this setup/context,
an ANN should learn a new task more proficiently, given knowledge acquired
over previously seen tasks, assuming that it is given access to data on previous
tasks. Historically, there have been various efforts made towards developing
frameworks for and approaches to meta-learning in ANNs. In 1992, Samy
Bengio et al. [10] looked at the possibility of a powerful (meta-)learning rule
to solve new tasks. Sebastian Thrun [149], in 1995, explored the problem of
lifelong learning, which is inspired by the ability of humans to exploit experi-
ences that come from related learning tasks to generalize to new, unseen tasks.
Two years later, Rich Caruana [23] wrote a survey about multi-task learning,
a variant of meta-learning. He explained how tasks could be learned in parallel
using a shared representation between models and presented a multi-task in-
ductive transfer notion that uses back-propagation to handle/tune the model
to additional tasks.

In recent times, meta-learning has experienced a vigorously renewed inter-
est, given its importance and implication for building more general-purpose,
adaptive agents. Many recent studies have leveraged meta-learning algorithms
(and variations) to improve generalization for various tasks. For example, Aha-
roni et al. [1] expanded the number of languages used in a multi-lingual neural
machine translation setting from 2 to 102. Their method learns a small number
of languages and generalizes them to a vast set of languages previously unseen
by their system. Yu et al. [168] presented domain-adaptive meta-learning, a
system that allows robots to learn from a single video of a human given an
inductive bias learned from prior meta-training data collected from related
tasks. The engineering team at YouTube [173] showed how they used multi-
task methods to make video recommendations and handle multiple competing
ranking objectives. Looking forward, the development of meta-learning al-
gorithms will help democratize deep learning and solve problems in domains
with limited data.

CHAPTER 3. META LEARNING 20

3.2 Meta Learning Formulation

In the standard supervised learning setup, we want to maximize the likelihood
of model parameters φ given the training data D:

arg max
φ

log p(φ|D). (3.1)

Equation (3.1) can be redefined as maximizing the probability of the data given
the parameters and maximizing the marginal probability of the parameters,
where p(D|φ) corresponds to the data likelihood and p(φ) corresponds to a
regularization term:

= arg max
φ

log p(D|φ) + log p(φ). (3.2)

Assuming that the data D consists of (input, label) pairs of (xi, yi), Equation
(3.2) can be further broken down as follows:

= arg max
φ

∑
i

log p(yi|xi, φ) + log p(φ) (3.3)

However, if we dealing with a very large dataset D (as is the case with most
complicated problems), our model will likely overfit. Even with the introduc-
tion of regularization (terms), there is still a risk of model overfitting/over-
parameterization unless careful, extensive tuning is conducted.

In contrast to the standard supervised setting defined above, the key prob-
lem that (supervised) meta-learning is concerned with solving is: Is it feasible
to get more data when dealing with supervised learning problem? Ravi and
Larochelle [116] is one of the first papers to provide a standard formulation
of the meta-learning setup, as shown in Figure 3.1. They reframe Equation
(3.1) to Equation (3.4) below, where Dmeta−train is the meta-training data
that allows our model to learn more efficiently. Formally, the problem is:

arg max
φ

log p(φ|D,Dmeta−train). (3.4)

Here, Dmeta−train corresponds to a set of datasets for predefined tasks, i.e.,
D1, D2, · · · , Dn. Furthermore, they design a set of meta-parameters θ =
p(θ|Dmeta−train), which includes the necessary information about Dmeta−train
in order to solve the new tasks.

Mathematically speaking, with the introduction of this intermediate vari-
able θ, the full likelihood of parameters for the original data given the meta-
training data (in Equation (3.4)) can be expressed as an integral over the

CHAPTER 3. META LEARNING 21

Figure 3.1: The meta-learning problem setup described in [116].

meta-parameters θ:

log p(φ|D,Dmeta−train) = log

∫
Θ
p(φ|D, θ)p(φ|Dmeta−train)dθ (3.5)

where we also note that the above equation can be approximated further with
a point estimate of our parameters:

≈ log p(φ|D, θ∗) + log p(θ∗|Dmeta−train). (3.6)

Note that p(φ|D, θ∗) is the adaptation task that collects task-specific pa-
rameters φ for a new task - assuming that the agent has access to the data
from that task D and meta-parameters θ. Furthermore, p(θ∗|Dmeta−train) is
the meta-training task that collects meta-parameters θ - assuming that the
agent has access to the meta-training data Dmeta−train.

In sum, the meta-learning process can be broken down into two, key phases:

• The adaptation phase: φ∗ = argmax
φ

log p(φ|D, θ∗) (first term in (3.6)

that needs to be optimized).

• The meta-training phase: θ∗ = argmax
θ

log p(θ|Dmeta−train) (second

term in (3.6) that needs to be optimized).

CHAPTER 3. META LEARNING 22

With respect to model parameter optimization, our meta-training data
consists of pairs of training and test sets for each and every task:

Dmeta−train = {(Dtrain
1 , Dtest

1), · · · , (Dtrain
n , Dtest

n)} (3.7)

where there are k feature-label pairs (x, y) in the training set Dtrain
i and l

feature-label pairs (x, y) in the test set Dtest
i , or:

Dtrain
i = {(xi1, yi1), · · · , (xik, yik)};Dtest

i = {(xi1, yi1), · · · , (xil, yil)} (3.8)

During the adaptation phase, we infer a set of task-specific parameters φ∗,
which is a function that takes as input the training set Dtrain and returns as
output the task-specific parameters: φ∗ = fθ∗(D

train). Essentially, we want to
learn a set of meta-parameters θ such that, the function φi = fθ(D

train
i) is good

enough for the test set Dtest
i . Finally, during the meta-learning phase, to get

meta-parameters θ∗, we want to maximize the probability of the task-specific
parameters φ being effective on new data points in the test set Dtest

i :

θ∗ = max
θ

n∑
i=1

log p(φi|Dtest
i). (3.9)

We next review key instantiations of the above meta-learning process.

3.3 Black-Box Meta-Learning

3.3.1 Formulation

The black-box meta-learning approach uses an ANN architecture to generate
the distribution p(φi|Dtrain

i , θ). More specifically, given task-specific parame-
ters φi = fθ(D

train
i), the process proceeds as follows:

• An ANN with meta-parameters θ (denoted as fθ) takes in the training
data Dtrain

i as input and returns task-specific parameters φi as output.

• Another ANN (denoted as g(φi)) takes in the task-specific parameters φi
as input and returns the predictions for test data points Dtest

i as output.

To optimize model parameters, we maximize the log likelihood of the out-
puts from g(φi) for all the test data points. This is done for all of the tasks in
the meta-training set:

max
θ

∑
Ti

∑
(x,y)∼Dtesti

log gφi(y|x) (3.10)

CHAPTER 3. META LEARNING 23

The above log likelihood of g(φi) is essentially the loss between a set of task-
specific parameters φi and a test data point Dtest

i , or:∑
(x,y)∼Dtesti

log gφi(y|x) = L(φi, D
test
i). (3.11)

In Equation (3.10), we actually optimize the loss between the function fθ(D
train
i)

and the evaluation on the test set Dtest
i :

max
θ

∑
Ti

L(fθ(D
train
i), Dtest

i) (3.12)

Building on the equations/ideas above, the black-box meta-learning process
can then be fully summarized according to the following recipe:

1. We sample a task Ti, the training set Dtrain
i , and the test set Dtest

i from
the task dataset Di.

2. We compute the task-specific parameters φi given the training set Dtrain
i :

φi ← fθ(D
train
i).

3. Then, we update the meta-parameters θ using the gradient of the objec-
tive with respect to the loss function between the computed task-specific
parameters φi and Dtest

i : ∇θL(φi, D
test
i).

4. This process is repeated iteratively with gradient descent optimization.

3.3.2 Challenges

The main issue with the black-box approach depicted occurs when φi happens
to be large/massive. If φi, for example, is a set of all the parameters of a
very deep ANN, then it is not scalable/feasible to output φi. Santoro
et al. [126] and Mishra et al. [97] attempt to tackle this problem. Instead
of having an ANN that outputs all of the parameters φi, they output a low-
dimensional vector hi, which is then used alongside meta-parameters θ to make
predictions. The new task-specific parameters φi take the form: φi = {hi, θg},
where θg represents all of the parameters other than h. Overall, the general
form of this variant of the black-box approach can be depicted formally as
follows:

yts = fθ(D
train
i , xts) (3.13)

CHAPTER 3. META LEARNING 24

Figure 3.2: The memory-augmented network as described in [126].

where yts corresponds to the labels of test data, xts corresponds to the features
of test data, and Dtrain

i corresponds to pairs of training data. This approach
was shown to facilitate a more scalable black-box meta-learning process since
h is of low complexity (in terms of parameters).

3.3.3 Architectures

Many different model architectures could be chosen to represent the func-
tion f . For example, memory-augmented networks, proposed by Santoro et
al. [126], used Long Short-Term Memory (LSTM) and Neural Turing Machine
(NTM) models to represent f . Both architectures have an external memory
mechanism to store information about the training data and can access that
information during inference in a differentiable way, as shown in Figure 3.2.
Garnelo et al. proposed conditional neural processes [39] and chose to repre-
sent f in three steps: (1) using a feedforward network to compute the training
data, (2) aggregating that data, and (3) passing that aggregation to another
feedforward network for inference. In contrast, meta networks (proposed by
Munkhdalai and Yu [101]) used other external memory mechanisms with slow
and fast weights inspired by neuroscience to represent f . Specifically, the
slow weights were designed for meta-parameters θ, and the fast weights were
designed for task-specific parameters φ. The neural attentive meta-learner,
proposed by Mishra et al. [97], used an attention mechanism to represent f .
Such a mechanism allowed the network to “pick out” the most critical infor-
mation from the data it gathers, thus making the optimization process far

CHAPTER 3. META LEARNING 25

more efficient.
In general, black-box meta-learning algorithms have a powerful learning

capacity because ANNs are universal function approximators. However, if
we impose a particular structure into the function, there is no guarantee
that black-box models will produce consistent results. Desirably, we can use
black-box approaches with different problem settings, including reinforcement
learning and self-supervised learning. However, despite their generality, since
black-box models always learn from scratch, they are incredibly data-hungry.

3.4 Optimization-Based Meta-Learning

To represent the distribution p(φi|Dtrain
i , θ) in the adaptation phase of meta-

learning, optimization-based meta-learning approaches try to optimize the pro-
cess of getting the task-specific parameters φi such that strong generalization
performance is achieved on the test set.

3.4.1 Formulation

Recall that the meta-learning problem can be broken down into two terms (as
shown below) – one that maximizes the likelihood of training data given the
task-specific parameters and one that maximizes the likelihood of task-specific
parameters given meta-parameters:

max
φi

log p(Dtrain
i |φi) + log p(φi|θ) (3.14)

where the meta-parameters θ are “pre-trained” during training time and then
fine-tuned at test time. The equation below is a typical optimization procedure
that adapts parameters via gradient descent:

φ← θ − α∇θL(θ,Dtrain) (3.15)

where α is the learning rate. To get the pre-trained parameters, we can use
standard benchmark datasets such as ImageNet for computer vision, Wikipedia
Text Corpus for language processing, or any other large and diverse dataset
that we have access to and is relevant for the modality/type of inputs/outputs
we want to model. As expected, this approach becomes less effective when
only small quantities of training are available.

To combat the potential issue of limited/small datasets, Model-Agnostic
Meta-Learning (MAML) from Finn et al. [36] is an algorithm was proposed
as one potential solution. Specifically, it takes the optimization procedure in

CHAPTER 3. META LEARNING 26

Figure 3.3: Diagram of the MAML method as described in [36].

Equation (3.15) and adjusts the loss so that only the best-performing task-
specific parameters φ on test data points are considered. This happens across
all of the tasks:

min
θ

∑
taski

L(θ − α∇θL(θ,Dtrain
i), Dtest

i) (3.16)

The key idea is to learn θ for all the assigned tasks such that θ can trans-
fer effectively via the optimization process (see Figure 3.3). In sum, the
optimization-based meta-learning algorithm proceeds as follows:

1. We sample a task Ti, the training set Dtrain
i , and the test set Dtest

i from
the task dataset Di.

2. We compute the task-specific parameters φi given the training set Dtrain
i

using the optimization procedure described above: φi ← θ−α∇θL(θ,Dtrain
i).

3. Then, we update the meta-parameters θ using the gradient of the objec-
tive with respect to the loss function between the computed task-specific
parameters φi and Dtest

i : ∇θL(φi, D
test
i)

4. This process is repeated iteratively via gradient descent.

As explained in the last section, the black-box meta-learning approach
takes the general form: ytest = fθ(D

train
i , xtest). The optimization-based

MAML method described above has a similar form as shown below:

ytest = fMAML(Dtrain
i , xtest) = fφi(x

test) (3.17)

with the update: φi = θ − α∇θL(φ,Dtrain
i).

CHAPTER 3. META LEARNING 27

Figure 3.4: The probabilistic graphical model for which MAML provides an
inference procedure, as described in [43].

To prove the effectiveness of the MAML algorithm, in [37], Finn and Levine
demonstrated that the MAML algorithm can approximate any function of
Dtrain
i , xtest for a complex function f . This finding demonstrates that the

optimization-based MAML algorithm is as expressive as the other black-box
algorithms mentioned so far.

3.4.2 Architectures

In [43], Grant et al. provided another MAML formulation as a method for
probabilistic inference via hierarchical Bayes. Assume that we have a
graphical model as illustrated in Figure 3.4, where J is the task, xjn is a data
point in that task, φj are the task-specific parameters, and θ are the meta-
parameters. To conduct inference with respect to this graphical model, we
want to maximize the likelihood of the data given the meta-parameters:

max
θ

log
∏
j

p(Dj |θ) (3.18)

The probability of the data given the meta-parameters can be expanded into
the probability of the data given the task-specific parameters and the probabil-
ity of the task-specific parameters given the meta-parameters. Thus, Equation
(3.18) can be rewritten as follows:

= log
∏
j

∫
p(Dj |φj)p(φj |θ)dφj . (3.19)

This integral in equation (3.19) can be approximated with a Maximum a
Posteriori (MAP) estimate for φj :

≈ log
∏
j

p(Di|φ̂j)p(φ̂j |θ). (3.20)

CHAPTER 3. META LEARNING 28

Figure 3.5: The MetaOptNet approach as described in [81].

To compute the desired MAP estimate above, Grant et al. [43] proposes
conducting the inference under an implicit Gaussian prior - with a mean that
is determined by the initial parameters and variance that is determined by the
number of gradient steps and the step size. Other proposals for computing
the MAP estimate in Equation (3.20) include:

• Rajeswaran et al. [114] proposes an implicit MAML algorithm that
uses gradient descent with an explicit Gaussian prior. More specifically,
they regularize the inner optimization of the algorithm to be close to the
meta-parameters θ: φ← min

φ′
L(φ′, Dtrain) + λ

2 ||θ− φ
′||2. The mean and

the variance of this explicit Gaussian prior is a function of λ regularizer.

• Harrison et al. [52] proposes the ALPaCA algorithm that uses an
efficient Bayesian linear regression on top of the learned features from
the inner optimization loop to represent the mean and variance of that
regression as meta-parameters themselves. The inclusion of prior infor-
mation here reduces computational complexity and adds more confidence
to the final predictions.

• Bertinetto et al. [15] attempts to solve meta-learning with differen-
tiable closed-form solutions. They apply a ridge regression as a base
learner for the features in the inner optimization loop. The mean and
variance predictions from the ridge regression are then used as meta-
parameters in the outer optimization loop.

• Lee et al. [81] attempts to solve meta-learning with differentiable con-
vex optimization solutions. The proposed method, called MetaOpt-
Net, uses a support vector machine to learn the features from the inner
optimization loop (see Figure 3.5).

CHAPTER 3. META LEARNING 29

Figure 3.6: The Deep Meta Learning as described in [175].

3.4.3 Challenges

The MAML method requires very deep neural architecture in order to effec-
tively obtain a good inner gradient update. Therefore, the first challenge lies
in choosing that architecture. Kim et al. [65] proposed Auto-Meta, which
searches for the (near optimal) MAML architecture. They found that highly
non-standard architectures with deep and narrow layers tended to perform
very well.

The second challenge relates to the unreliability of the two-degree opti-
mization paradigm. There are many different optimization tricks that can be
useful to combat this unreliability. For example, Li et al. [84] proposed Meta-
SGD that learns the initialization parameters, the direction of the gradient
updates, and the value of the inner learning rate in an end-to-end fashion.
This method has proven to increase speed and accuracy of the meta-learner.
Behl et al. [9] designed Alpha-MAML, which is an extension of the vanilla
MAML. Alpha-MAML uses an online hyper-parameter adaptation scheme to
automatically tune the learning rate, making the training process more ro-
bust. Zhou et al. [175] devised deep meta-learning, which performed meta-
learning in a concept space. As illustrated in Figure 3.6, the concept gener-
ator generates the concept-level features from the inputs, while the concept
discriminator discriminates the features generated from that first step. The
final loss function includes both the loss from the discriminator and the loss
from the meta-learner. Zintgraf et al. [176] designed CAVIA, which stands
for fast context adaptation via meta-learning. To handle overfitting inherent
to vanilla MAML, CAVIA optimizes only a subset of the input parameters in
the inner loop at test time (deemed context parameters) instead of the whole
ANN. By separating task-specific parameters from task-independent param-

CHAPTER 3. META LEARNING 30

eters, they showed that training CAVIA is very efficient. Finally, Antoniou
et al. [4] proposed MAML++, a comprehensive guideline on reducing the
hyper-parameter sensitivity, lowering the generalization error, and improving
MAML stability. Furthermore, they suggested “disentangling” both the learn-
ing rate and the batch-norm statistics per step of the inner loop to speed up
optimization.

The third challenge lies in the computational expense associated with back-
propagation. The more inner gradient steps used, the more challenging the
optimization process becomes. There are two approaches to deal with this.
The first comes the studies of Finn et al. [36] and Nichol et al. [102], which

proposed truncating the back-propagation by approximating the
dφi
dθ matrix as

an identity function. This proves to work for simple, few-shot learning prob-
lems (small number of tasks). The second comes from the work Rajeswaran

et al. [114], which applies a theorem to compute the meta-gradient
dφi
dθ implic-

itly. This algorithm’s benefit is that the outcome only depends on the inner
optimization’s solution, but not the number of inner gradient steps required.

In general, optimization-based meta-learning algorithms can be reduced
to gradient descent; thus, it is reasonable to expect consistent predictions.
For deep enough ANNs, optimization-based models also demonstrate very
high capacity – since the initialization is optimized internally, optimization-
based models have a “head-start” over black-box models. Furthermore, we
can try out different architectures without any real difficulty, as evidenced
by the Model-Agnostic Meta-Learning (MAML) learning paradigm. How-
ever, the second-order optimization procedure makes optimization-based ap-
proaches computationally expensive.

3.5 Non-Parametric Meta-Learning

Non-parametric methods are very effective at learning with small amounts of
data (k-Nearest Neighbor, decision trees, support vector machines). In non-
parametric meta-learning, we compare the test data with the training data
using a similarity metric. If we find the training samples that are most similar
to the test samples, we assign the labels of those training data as the label of
the test data. Meta-learning can also be designed to follow the non-parametric
form of learning.

CHAPTER 3. META LEARNING 31

Figure 3.7: Prototpyical Networks as described in [136]

3.5.1 Formulation

Specifically, the non-parametric form of meta-learning can be compactly sum-
marized as follows:

1. We sample a task Ti, the training set Dtrain
i , and the test set Dtest

i from
the task dataset Di.

2. We predict the test label ŷtest via the similarity between training data
and test data (represented by fθ): ŷ

test =
∑

xk,yk∈Dtrain
fθ(x

test, xk)yk.

3. Then we update the meta-parameters θ of this learned embedding func-
tion with respect to the loss function of how accurate our predictions are
on the test set: ∇θL(ŷtest, ytest)

4. This process is repeated iteratively using gradient descent.

Unlike the black-box and optimization-based approaches, we no longer have
the task-specific parameters φ (which is not required for the comparison be-
tween training and test data).

3.5.2 Architectures

Much as is the case for black-box based and optimization-based methods,
there are many different architectures that can be used within the-parametric
meta-learning process. Koch et al. [69] proposed a Siamese network that con-
sists of two tasks: a verification task and a one-shot task. The network takes
in pairs of images during training time and verifies whether they are of the
same class or different classes. At test time, the network performs one-shot
learning: comparing each image xtest in test set to the images in training set
Dtrain
j for a respective task, and predicting the label of xtest that corresponds

CHAPTER 3. META LEARNING 32

to the label of the closest image. Matching Networks were proposed by Vinyals
et al. [158], which match the actions happening during training time at test
time. The network takes the training data and the test data and embeds them
into its respective embedding space. Then, the network compares each pair of
train-test embeddings to make the final label predictions. The Matching Net-
work architecture used in Matching Networks includes a convolutional encoder
network to embed the images and a bi-directional Long-Short Term Memory
network to produce such images’ embeddings. Snell et al. [136] proposed the
“prototypical network”, which creates prototypical embeddings for all of the
classes in a given dataset. The network then compares these embeddings to
make the final label predictions for the corresponding class. Figure 3.7 pro-
vides a concrete illustrations of what Prototypical Networks look like in the
few-shot scenario. c1, c2, and c3 are the class prototypical embeddings. Using
these embeddings, one can compute the distances from input data x to each
of the prototypical class embeddings: D(fθ(x), ck). To get the final class pre-
diction pθ(y = k|x), we look at the probability of the negative distances after
applying the softmax transformation.

3.5.3 Challenges

For non-parametric meta-learning, how can we learn deeper/more complex
interactions between our inputs? Nearest neighbors will probably not work as
well when the data is high-dimensional. Several efforts have tried to address
this issue. The “RelationNet” was proposed by Sung et al. [142], which has
two modules: the embedding module and the relation module. The embedding
module embeds the training and test inputs to training and test embeddings.
Then the relation module takes in the embeddings and learns a deep distance
metric to compare those embeddings. Allen et al. [2] created a model called
the “infinite mixture of prototypes”. This is an extension of the Prototypical
Networks, in the sense that it adaptively sets the model capacity based on the
data complexity. By assigning each class its own cluster, this method allows
the use of unsupervised clustering, making the method a bit more general. In
contrast, Garcia and Bruna [38] designed a graph neural network in their meta-
learning paradigm. By mapping the inputs into a graphical representation, the
system can quickly learn the similarity between training and test data samples
using the edge and node features.

In general, non-parametric meta-learning algorithms exhibit adequate learn-
ing capacity for most architectures and good learning consistency under the
assumption that the learned embedding space is “effective enough”. Further-
more, non-parametric approaches do not involve any back-propagation, so they

CHAPTER 3. META LEARNING 33

are computationally fast and easy to optimize. The downside is that these ap-
proaches are hard to scale to large data batches since they are non-parametric.

Chapter 4

Literature Review

This section presents an extensive analysis of state-of-the-art recommenda-
tion models using linear models, artificial neural networks (ANN), and meta-
learning-based approaches. There has been an increasing amount of interest
in the past five to seven years of research in the recommendation systems
community on how to incorporate deep artificial neural network (ANN) ar-
chitectures into the automatic recommendation process. These advancements
stand in contrast with the practical usage and deployment of models in the
industry, where engineers and scientists rely on simple linear models due to
engineering and business requirements. In light of this disparity between sci-
entific and industry perspectives, we will try to provide a more holistic view
of the field, considering both important advances and industry considerations.
We will start by revisiting matrix factorization, the most popular linear rec-
ommendation model.

4.1 Matrix Factorization For Recommendation

Recall in Chapter 2, collaborative filtering algorithms analyze past user be-
havior in order to establish relationships between users and items. Users with
similar preferences in the past will received similar preferences in the future.
There are two common challenges with the implementation of these algorithms:

• The dataset size is huge in real-world applications.

• The rating matrix is often (very) sparse, where only a small number of
users give ratings to a small number of items.

Matrix factorization [71,119] has proven to be useful model when attempt-
ing to tackle the above challenges. Historically, it has been used for latent

34

CHAPTER 4. LITERATURE REVIEW 35

Figure 4.1: A typical matrix factorization process (diagram adapated from
[45]).

variable decomposition and dimensionality reduction [71]. More specifically,
matrix factorization (Figure 4.1) is a latent factor model that represents the
rating matrix as the product of a user factor matrix and an item factor matrix.

We briefly review the four key matrix factorization models. Singular Value
Decomposition (SVD) is a method that finds a lower-dimensional feature space
for a given matrix by breaking it down into three separate orthogonal matri-
ces [41,109,160]. Principal Component Analysis (PCA) is a classical statistical
method (which usually builds on the mechanics of SVD) that finds patterns
in data with high dimensions [159]. It obtains an ordered list of components
that account for the largest variance from the data in terms of least square
errors. Probabilistic Matrix Factorization adds a probabilistic spin to ma-
trix factorization with Gaussian observation noise [124]. Non-Negative Matrix
Factorization is the standard matrix factorization model, with a caveat that
matrices cannot contain negative elements. It has proven to work well with
non-negative data formats such as images and videos [46,148].

4.2 Multilayer Perceptrons For Recommendation

Despite the effectiveness of matrix factorization for collaborative filtering, it
is well-known that its performance can be hindered by the simple choice of
the interaction function, i.e., the inner product. For example, for the task of
rating prediction on explicit feedback, it is a common practice to improve the
performance of the matrix factorization model by incorporating user and item
bias terms into the interaction function. While this, at first glance, might

CHAPTER 4. LITERATURE REVIEW 36

Figure 4.2: A typical multi-layer perceptron architecture (diagram taken from
[99]).

appear to be just a trivial tweak for the inner product operator, it reveals that
there is a positive effect if one designs a better, dedicated interaction function
for modeling the latent feature interactions between users and items. The
inner product, which combines the multiplication of latent features linearly,
may be insufficient to capture the actual complex structure underlying user
interaction data.

The multilayer perceptron (MLP) (Figure 4.2) is a feed-forward ANN
with multiple hidden layers between the input layer and the output layer.
Using this model means replacing the inner product of matrix factorization
with a stack of interleaved linear and non-linear transformations. In between
each layer is a (dense) matrix of scalar synaptic weight values, which represent
the trainable parameters of the MLP model. To adjust these synaptic weight
values, assuming we have a cost function for measuring the MLP’s predictive
performance on the task at hand, we can use back-propagation of errors to
automatically calculate the gradients (or partial derivatives) of the cost with
respect to each and every single synaptic weight. The weights themselves
are adjusted with stochastic gradient descent (or a more outer optimization
procedure).

There are several prevalent and powerful MLP-based methods for the rec-
ommendation task. Many of them take the approach of trying to construct a
model that models both users and items. Neural Collaborative Filtering [54]
and Neural Network Matrix Factorization [33] are two models that use complex
ANN structures to represent the two-way interaction between user preferences
and item features. On the other hand, the Deep Factorization Machine [49]
is an end-to-end model that combines a matrix factorization process and an

CHAPTER 4. LITERATURE REVIEW 37

MLP. It can model the high-order feature interactions of input variables using
deep ANN and low-order interactions with the matrix factorization machine.
The factorization machine captures the linear and pairwise interactions be-
tween features, while the MLP captures the nonlinear and hierarchical struc-
ture between features. As an extension of the Deep Factorization Machine, the
Extreme Deep Factorization Machine [85] jointly models both the explicit and
implicit feature representations. More specifically, it uses a compressed inter-
action network to capture explicit high-order feature interactions. The Neural
Factorization Machine [53] is a closely related model. It uses an MLP to cap-
ture high-order feature interactions but regularizes the MLP with dropout and
batch normalization (applied to each layer).

Other MLP-based approaches focus on learning representations of item fea-
tures directly. Wide and Deep Learning [27] is a model framework introduced
initially by Google to solve the app recommendation problem in Google Play.
The “wide” learning component is a single layer perceptron, while the “deep”
learning component is an MLP. The wide learning component can catch the
direct features from historical data to capture memorization, while the deep
learning component can produce more general and abstract representations to
capture generalization. This unification improves both the accuracy and di-
versity of generated recommendations. Another work from Google applies the
MLP to YouTube recommendations [29], in which they divide the recommen-
dation task into two stages: a generating candidate and a ranking candidate.
The candidate generation network receives a subset of samples from the video
corpus, and then the ranking network builds a top-K list of videos based on the
nearest neighbor scores from the selected candidates. [26] proposed a wide and
deep learning framework tailored for large-scale industrial-level recommenda-
tion tasks. In particular, the deep learning component is a tailored network
that has a significantly lower running time than a standard MLP. Moreo-
ever, the model can determine which features are memorized or generalized
and allocate them to the wide and deep components for further processing.
Collaborative Metric Learning [61] uses an MLP to learn item feature repre-
sentations in formats such as text, images, and tags. It captures the user and
item latent embeddings via (1) maximization of the distance between users
and their disliked items, and (2) minimization of the distance between users
and their preferred items.

CHAPTER 4. LITERATURE REVIEW 38

Figure 4.3: A typical Autoencoder architecture (diagram taken from [98]).

4.3 Autoencoders For Recommendation

Autoencoder (Figure 4.3) is suitable for unsupervised learning tasks and can
acquire rich, latent feature representations in tasks ranging from image recog-
nition [108] to speech recognition [90]. Inspired by autoencoders’ expressive
power, recent recommendation architectures have incorporated autoencoders
to address the challenges of traditional recommendation systems. Notably,
an autoencoder can learn the non-linear user-item interaction efficiently and
encode complex abstractions into data representations. Additionally, we can
construct autoencoders to discover useful knowledge from multi-modal sources
to address the data sparsity issue.

There are currently two ways to use autoencoder in a recommendation
system: either to learn the low-dimensional feature representations at the
bottleneck layer or to fill in the missing values of the user-item interaction
matrix directly in the reconstruction layer. For the first use, collaborative
Deep Learning [162] is a hierarchical Bayesian deep learning framework that
combines stacked denoising autoencoder (SDAE) and probabilistic matrix fac-
torization (PMF). There are two components inside this Bayesian framework:
(1) a perception component (SDAE) and (2) a task-specific component (PMF).
This combination enables the model to balance the influences of side infor-
mation and interaction history. [83] proposed the Collaborative Variational
Autoencoder (CVAE), which is an extension of CDL that replaces the per-
ception component with a variational autoencoder. This change enables ef-
ficient learning of probabilistic latent variables for content information and
incorporation of multi-media data sources. The Deep Collaborative Filtering

CHAPTER 4. LITERATURE REVIEW 39

Framework [82] is a marginalized denoising-autoencoder-based collaborative
filtering model. This autoencoder marginalizes out the corrupted input and
saves high computational costs, making it more scalable than other autoen-
coders’ variants. Collaborative Deep Ranking [167] is a variant of CDL but
was designed specifically for the task of item ranking. AutoSVD++ [170] uti-
lizes a contractive autoencoder [120] to learn item feature representations and
integrates it with SVD++ [70], a classic recommendation model. Compared to
other autoencoders variants, the contractive autoencoder can capture even the
tiniest of input variations, making it extremely effective to learn the implicit
feedback.

For the second use, [104] proposed the Autoencoder-based Collaborative
Filtering (ACF) method. It decomposes the partially observed vectors in the
interaction matrix by integer ratings and uses a cost function to reduce the
mean squared error between actual-predicted rating pairs. However, ACF
fails to handle non-integer ratings. Moreover, its decomposition of partially
observed vectors increases the sparseness of input data and reduces prediction
accuracy. Unlike ACF, AutoRec [129] directly takes user or item rating vectors
as input data and obtains the reconstructed rating at the output layer. The
more layers it has, the better the prediction performance is. The Collaborative
Filtering Network (CFN) [139,140] is another extension of AutoRec that uses
SDAE to make the model more robust. Moreover, CFN incorporates side
information such as user profiles and item descriptions to mitigate the sparsity
and speed up the training process. In contrast, the Collaborative Denoising
Autoencoder (CDAE) [166] uses a denoising autoencoder to formulate the
user-item feedback data and then learns the distributed representations of the
users and items. A negative sampling technique is used to sample a small
subset from the negative set, which reduces the time complexity substantially.
Finally, the Multi-VAE and Multi-DAE [86] are other variants of Variational
Autoencoder for recommendation with implicit data. They use a principled
Bayesian inference approach known as multinomial likelihood to estimate the
model parameters and show favorable results compared to other commonly
used likelihood functions.

4.4 Meta Learning For Recommendation

Given that meta-learning can yield agents capable of training with few train-
ing samples (for each task) and adapt to new tasks, it is not surprising that
meta-learning has been used recently to tackle the cold-start issues in recom-
mendation systems. Many of these approaches adopted optimization-based

CHAPTER 4. LITERATURE REVIEW 40

Figure 4.4: The MeLU architecture proposed in [80].

meta-learning and chose MAML for the model training process. Specifically,
the approach taken is as follows:

• Given a recommendation model Rθ with parameter θ and a meta-learner
M(θ), they treat each learning task as the act of capturing each user’s
preference.

• The initialization of parameter θ is defined by some function θ ←M(θ),
e.g. in the simplest case, θ ← φ.

• During training, θ will be locally updated by minimizing the recommen-
dation loss L(Rθ(D

train)) on the training set Dtrain for a single user.
During inference, θ will be used to retrieve the recommendation loss
L(Rθ(D

test)) on the test set Dtest.

• The parameter of the meta-learner φ will be globally updated by mini-
mizing the sum of recommendation loss

∑
u∈Utrain(L(Rθ←φ(Dtest))) for

all users in the training dataset. Then, φ will be used to initialize θ,
which can expedite the learning process of the recommendation models
for test users.

The significant differences among these MAML-based recommendation sys-
tems are in designing the recommendation modelRθ and the meta-optimization
approach M(θ). For example, MeLU [80] uses a feed-forward neural network
as the recommendation model with multiple layers (figure 4.4). First, it takes
user and item content as the input. Then, it performs embedding processes
based on the input and concatenates the embedded vectors. Next, it feeds

CHAPTER 4. LITERATURE REVIEW 41

the concatenation of user and item embeddings into fully-connected layers
to get predictions. For meta-optimization, MeLU locally updates the neural
layers’ parameters to get personalized recommendations and globally updates
the embeddings’ learning parameters and neural layers’ global parameter. [32]
proposed S2Meta, which applies a feed-forward neural network as the rec-
ommendation model and consists of three modules: an embedding module to
generate user and item embeddings, a hidden layer module that concatenates
the user and item embeddings, and an output module that computes the rec-
ommendation score based on the mapped representation of user-item interac-
tion from the last hidden layer of the neural network. For meta-optimization,
s2Meta can automatically learn to control the learning process from end-to-
end, including parameter initialization, update strategy, and early-stop policy.
MetaSelector [92] addresses the problem of user-level model selection to im-
prove personalized recommendation quality. Given a recommendation request
as input, it outputs a probability distribution over the recommendation mod-
els. In the meta-training phase, an initialization for MetaSelector is optimized
through episodic learning with MAML. In the deployment phase, MetaSelec-
tor adapts to individual users using personalized historical data in the training
set and aggregates results of recommendation models for new queries. On the
other hand, SML [171] explores the central theme of model retraining in rec-
ommendations, a topic of high practical value in industry recommendation
systems but receives relatively little scrutiny in research. It is a retraining
method with two major attributes: (1) an expressive component that transfers
the knowledge gained in previous training to the training on new interactions,
and (2) an optimization scheme that moves the transfer component towards
the recommendation performance in the near future. The whole architecture
can be seen as an instance of meta-learning - where the retraining of each
period is a task, which has the new interactions of the current period as the
training set and the future interactions of the next period as the testing set.

Besides the above key papers, other recent efforts bring different meta-
learning approaches into recommendation systems. [155] presents a metric-
based approach to address the item cold-start problem. For conditioning the
base model, two strategies are proposed: (1) a linear weight adaptation method
that builds a linear classifier and adapts its weights based on the task infor-
mation, and (2) a non-linear bias adaptation method that builds an ANN
classifier using task information to adapt the biases of the ANN while sharing
weights across all tasks. [172] tackles the challenge of making personalized rec-
ommendation for new users arriving sequentially. A two-stage meta-learning
algorithm is proposed to learn the model parameters: (1) a fixed stage that

CHAPTER 4. LITERATURE REVIEW 42

Figure 4.5: The MAMO architecture proposed in [31].

captures user-invariant features offline, and (2) an adaptive stage that captures
user-specific features online. The proposed approach is more efficient and less
bulky than previous methods by decoupling user-invariant parameters from
user-dependent parameters. It also has the potential to deal with catastrophic
forgetting while continually adapting for streaming coming users. [88] looks at
the challenging problem in online recommendation systems of predicting users’
current interests. The proposed framework, FLIP, can model user intent and
user preference explicitly in two spaces. In the intent space, the relevant em-
beddings’ learning is treated as a meta-learning problem instead of an online
learning problem. In the preference space, the preference embedding space
is learned through an online learning procedure based on samples with cal-
ibrated user intent. There are two major advantages of FLIP: (1) the user
intent factors can be learned much faster in a meta-learning fashion (which is
designed to learn from samples within the current session), and (2) the user
preference factors could benefit from the stable continuous learning process
and are updated smoothly. [91] proposes to address the cold-start recommen-
dation problem at both the data and model levels. It uses a heterogeneous
information network (HIN) to augment the data, where each meta-learning
task is treated as learning the preference of each user. The proposed ap-
proach, MetaHIN, consists of two parts: (1) a semantic-enhanced task con-
structor to explore rich semantics on HINs in the meta-learning setting, and
(2) a co-adaptation meta-learner with semantic- and task-wise adaptations to
cope with different semantic facets within each task. [31] presents a black-box
system that addresses the issues of an optimization-based system such as in-

CHAPTER 4. LITERATURE REVIEW 43

stability, slow convergence, and weak generalization. The proposed system,
Memory-Augmented Meta-Optimization (MAMO) (Figure 4.5), leverages the
power of memory-augmented neural networks - which can express, store, and
manipulate the records explicitly, dynamically, and effectively. MAMO in-
cludes two memory matrices to provide personalized initialization for recom-
mendation models: (1) a feature-specific memory that provides a personalized
bias term when initializing the recommendation model, and (2) a task-specific
memory that guides the recommendation process.

Chapter 5

MetaRec

Inspired by previous works [16,80,91] that use optimization-based meta-learning
for the recommendation task, we discuss the inner workings of MetaRec in de-
tail within this chapter. Following the typical problem formulations presented
in mainstream recommendation systems research, we consider the collabo-
rative filtering task for recommending items to each user, focusing on two
important problem cases: (1) binary classification and (2) rating regression.

We denote all users’ set as U and all items’ set as I. In the binary classifi-
cation scenario, each item is either implicitly liked (label 1) or implicitly not
liked (label 0) by each user. The task is to predict the probability of whether
the user pu will like an item qi: P (rui = 1|pu, qi), where rui ∈ {0, 1} is the
rating that user pu gives to item qi. We want to recommend items that have a
high probability of being liked by the user. In the rating regression scenario,
each item is explicitly rated according to a numeric scale. For example, in the
case of the MovieLens dataset (introduced in Section 6.1), the scale is 1 − 5.
The task is to predict the actual rating that user pu will assign to an item qi.
We want to recommend movies that are highly rated by the user, i.e., 4 or 5
in the dataset.

In the context of meta-learning, we want to learn a recommendation model
that generalizes to all users. With only minor fine-tuning (and limited data),
the model can adapt to specific users. We define each task T as recommending
items to one user, given examples of items already rated by the user. We denote
the recommendation algorithm as Fθ(.) (which can be any function), where θ
contains the model parameters:

Binary Classification: P (rui = 1|pu, qi) = Fθ(pu, qi, θ)

Rating Regression: r̂ui = Fθ(pu, qi, θ)
(5.1)

44

CHAPTER 5. METAREC 45

5.1 The Automatic Recommendation Task

Next, we will present the notation associated with our recommendation task.
Each task Tu generates a set of training items and a set of test items that user
u has already rated. Every user-item pair has a rating rui. For each task Tu,
we want to infer the ratings of each of the items in the test set for user u,
using a model trained on the items in the training set.

Out of all the meta-learning algorithms introduced in Chapter 3, we de-
cided to adopt the Model-Agnostic Meta-Learning [36] (MAML) framework,
which uses stochastic gradient descent for rapid test-time predictions. When
adapting the recommendation model to task Tu, the model’s parameters θ be-
come φu. Following the process of MAML, we compute φu using the gradient
updates based on the loss function value for each task Tu.

5.2 The Local Updates

We want to train the model Fθ(pu, qi, θ) to generalize across all tasks, such
that it can perform well on a new task Tu for a new user using only a few
gradient updates. We sample a batch of tasks B from the user set U and then
update the recommendation model Fθ(pu, qi, θ) for each task Tu as follows:

φu = θ − α∇θLTu(Fθ) (5.2)

where the (scalar) step size α is a hyper-parameter that is pre-defined. For
binary classification, the loss function LTu is the binary cross-entropy (or neg-
ative Bernoulli log likelihood) which takes the following form:

LTu(Fθ) =
∑
Tu∼B

[rui logFθ + (1− rui) log(1− Fθ)] (5.3)

For rating regression, the loss function LTu is a mean-squared error loss (or
negative Gaussian log likelihood with fixed standard deviation of 1) with the
following form:

LTu(Fθ) =
1

2

∑
Tu∼B

(rui − r̂ui)2. (5.4)

5.3 Global Update

In the global update of our meta-learning process, we update the parameters
θ based on the test loss for all tasks Tu. This meta-objective looks like this:

min
φ

∑
Tu

LTu(Fφu) =
∑
Tu

LTu(Fθ−α∇θLTu (Fθ)). (5.5)

CHAPTER 5. METAREC 46

Figure 5.1: Meta-Learning scheme for MetaRec.

We also use stochastic gradient descent to globally update the parameters θ:

θ = θ − β∇θ
∑
Tu∼B

LTu(Fφu) (5.6)

where the (scalar) step size β is a hyper-parameter that is pre-defined.
In Figure 5.1, we graphically depict our proposed Meta-Rec learning pro-

cess. In the next section, we will detail the dynamics of the concrete recom-
mendation models used as baselines for (benchmarking) comparison for the
Meta-Rec process itself.

Chapter 6

Experiments

6.1 The Dataset

In the experiments conducted for this thesis, we used the MovieLens1M
Dataset, a famous dataset within the recommendation systems research com-
munity [51]. The database contains 1, 000, 209 anonymous ratings of 3, 883
movies made by 6, 040 MovieLens users who joined MovieLens in 2000. There
are three files in the dataset: ratings, users, and movies (see Table 6.1):

• Ratings: There are four columns in this file - UserID, MovieID, Rating,
and Timestemp. UserIDs range between 1 and 6040. MovieIDs range
between 1 and 3952. Ratings are made on a 5-star scale (whole-star
ratings only). Timestamp is represented in seconds. Each user has at
least 20 ratings.

• Users: There are five columns in this file - UserID, Gender, Age, Oc-
cupation, & Zipcodes. All demographic information is provided volun-
tarily by the users (not checked for accuracy). Only users who have
provided some demographic information are included. Gender is de-
noted by “M” for male and “F” for female. Occupation is chosen from
21 different choices: ”other”, ”academic / educator”, ”artist”, ”clerical
/ admin”, ”college/grad student”, ”customer service”, ”doctor/health
care”, ”executive / managerial”, ”farmer”, ”homemaker”, ”K-12 stu-
dent”, ”lawyer”, ”programmer”, ”retired”, ”sales / marketing”, ”sci-
entist”, ”self-employed”, ”technician / engineer”, ”tradesman / crafts-
man”, ”unemployed”, and ”writer.” Age is chosen from 7 different ranges:
”Under 18”, ”18-24”, ”25-34”, ”35-44”, ”45-49”, ”50-55”, & ”56+”.

47

CHAPTER 6. EXPERIMENTS 48

Table 6.1: MovieLens1M Dataset Characteristics

Attributes Users Movies Ratings

Total 6,040 3,883 1,000,209
Min Rating 20 1 1
Max Rating 2,314 3,428 5

Average Rating 165.6 269.9 3.58

• Movies: There are three columns in this file - MovieID, Title, and Gen-
res. Titles are identical to those on IMDB (including year of release).
Genres are pipe-separated and are selected from 18 different genres: ”Ac-
tion”, ”Adventure”, ”Animation”, ”Children’s”, ”Comedy”, ”Crime”,
”Documentary”, ”Drama”, ”Fantasy”, ”Film-Noir”, ”Horror”, ”Musi-
cal”, ”Mystery”, ”Romance”, ”Sci-Fi”, ”Thriller”, ”War”, & ”Western.”

In the appendix, we explored and visualized several important attributes con-
tained in the dataset (see the relevant figures in Section A.1), such as movie
titles, movie genres, rating distribution, etc.

6.2 Matrix Factorization Experiments

In this section, we look at Matrix Factorization (MF) in detail. As explained
briefly in Section 4.1, MF is essentially a linear, latent factor model. First, we
examine MF’s dynamics closer and brainstorm ways to strengthen its capac-
ity by adding more factors: biases, side information, temporal information,
mixture of tastes, etc. We also previously discussed these baseline models in
our published article [77]. We then introduce our method, MetaRec-MF, that
uses MF as the base (sub-)model Fθ(pu, qi) under the MetaRec framework
introduced in Chapter 5. We will provide empirical results to evaluate our
proposed approach and extract insights.

6.2.1 Standard Matrix Factorization

The dynamics of a standard matrix factorization for automatic recommenda-
tion can be posed as follows [71]:

rui = pu · qTi (6.1)

where we observe that the model predicts the response of a user u to an
item i with only a single term: the dot product between a k-dimensional

CHAPTER 6. EXPERIMENTS 49

Figure 6.1: A graphical depiction of MF (diagram taken from [18]).

embedding vector of the user pu and the item qi (how well-matched is this
user to this particular item?). The framing of Equation 6.1 is equivalent to a
decomposition of a bias-corrected response matrix R (of shape (m × n)) into
two far lower-dimensional matrices U (of shape (m × k)) and IT (of shape
(k × n)). Unlike many machine learning algorithms, the MF process learns
the implicit latent factors that compose the embeddings from raw responses
instead of declaring them upfront as explicit features. Since we have not
observed every user-item interaction a priori, R will be sparse, as shown in
Figure 6.1.

MF assumes that there are only k latent factors that contribute to the
preference of any given user for a particular item, where k is chosen to recover
best the information in our observed matrix R. This assumption reduces
the complexity of this problem from O(m × n) to the much more tractable
O(k× (m+n)) (though at the expense of convexity – meaning we will solving
a non-convex optimization problem).

We learn the MF system defined in Equation 6.1 by fitting the model
to previously observed ratings. However, we also want to generalize those
previous ratings in order to predict unknown ratings. Thus, we mitigate over-
fitting to observed data by adding an L2 regularization penalty to each element
(of R) and optimize the learned parameters simultaneously with stochastic
gradient descent:

min
∑

(u,i)∈T

(rui − pu · qTi)2 + λ(||pu||2 + ||qi||2) (6.2)

where T is the set of user-item pairs with known ratings and λ is the regular-

CHAPTER 6. EXPERIMENTS 50

ization rate.

6.2.2 Matrix Factorization with Biases

One benefit of the matrix factorization approach to collaborative filtering is its
flexibility when dealing with various data types and other application-specific
requirements. Recall that Equation 6.1 attempts to capture the interactions
between users and items that produce different rating values. However, much
of the observed variation in the rating values are due to effects associated with
either users or items, known as biases, independent of any interactions. The
intuition behind this is that some users give higher ratings than others, and
some items received higher ratings than others systematically.

To account for this intuition in the MF model dynamics, we modify Equa-
tion 6.1 as follows [71]:

rui = b+ ωu + ωi + pu · qTi (6.3)

where we add the global bias b (the average rating for all items), the bias of
the user ωu (how much do this user like things generally?), and the bias of the
item ωi (how popular is this item generally?). The loss function from equation
6.2 is updated as follows:

min
∑

(u,i)∈T

(rui − b− ωu − ωi − pu · qTi)2 + λ(||pu||2 + ||qi||2 + ω2
u + ω2

i) (6.4)

6.2.3 Matrix Factorization with Side Features

A common challenge in collaborative filtering is the cold start problem due to
its inability to address new items and new users. Furthermore, many users
might supply very few ratings, making the user-item interaction matrix very
sparse. A way to alleviate this problem is to utilize more user information,
also called side features. Side features can be user demographics as well as
implicit feedback.

We have two options for integrating potential side features: adding them as
an additional bias (artists like movies more than other occupations) and adding
them as a vector (realtors love real estate shows). The matrix factorization
model should integrate all signal sources to create a richer user representation
[71], the dynamics of which are:

rui = b+ do + ωu + ωi + (pu + to) · qTi (6.5)

CHAPTER 6. EXPERIMENTS 51

For this model, we add the bias for occupation do (if occupation changes the
“like rate”) and the vector for occupation to (if occupation changes depending
on the item). The loss function from equation 6.4 is updated as follows:

min
∑

(u,i)∈T

(rui − b− ωu − ωi − do − (pu + to) · qTi)2

+λ(||pu||2 + ||qi||2 + ||to||2 + ω2
u + ω2

i)

(6.6)

6.2.4 Matrix Factorization with Temporal Features

In the real-world, item popularity and user preferences change frequently.
Therefore, we should take into consideration the temporal effects reflecting
the dynamic nature of user-item interactions. To accomplish this, we can add
a temporal term that affects user preferences and, therefore, the interaction
between users and items. Specifically, we experiment with a new dynamic
prediction rule based on a rating at time t [71]. The dynamics of this system
are:

rui = b+ ωu + ωi + pu · qTi +mu · nt (6.7)

where we integrated the variables nt (a vector of time series) and mu (a vector
of user with respect to time) to make the MF process evolve with time. Here,
the latent temporal vector mu · nt encodes a user mixture of time series that
captures user-time interactions. We also enforced that nearby time steps have
similar components by minimizing |nt− nt−1| in the regularization term. The
loss function then looks like this:

min
∑

(u,i)∈T

(rui − b− ωu − ωi − pu · qTi −mu · nt)

+λ(||pu||2 + ||qi||2 + ||mu||2 + |||nt − nt−1|||2 + ω2
u + ω2

i)

(6.8)

6.2.5 Factorization Machines

One of the more powerful techniques for the recommendation system is called
the Factorization Machine (FM) [117], which has a robust and expressive
capacity to generalize matrix factorization methods. In many applications, we
have plenty of item metadata that can be used to make better predictions.
This is one of the benefits of using FMs with feature-rich datasets – the FM
paradigm provides a natural way to include extra features during learning,
using a dimensionality parameter k to model higher-order interactions. A
second-order FM model suffices for sparse datasets since there is not enough
information to estimate more complex interactions.

CHAPTER 6. EXPERIMENTS 52

Formally, the dynamics of a second-order FM are as follows:

rui = b+
n∑
i=1

ωi · xi +
n∑
i=1

n∑
j=i+1

< vTi , vj > xi · xj (6.9)

where vi and vj represent two k-dimensional latent embeddings for feature
i and feature j. < vi, vj > represents their inner product that models the
interaction between feature i and feature j. More specifically, vi and vj (within
V ∈ Rn×k) denote the i-th variable and k-th variable with k factors (where k is
the fixed dimensionality parameter). ωi ∈ Rn models the interaction of the i-
th feature to the target. xi and xj denote the corresponding weights of feature
i and feature j, so that only interactions of non-zero features are considered.∑n

i=1

∑n
j=i+1 denote the sum over all pairs of features. The corresponding

loss function is:

min
∑

(u,i)∈T

(rui − b−
n∑
i=1

ωi · xi −
n∑
i=1

n∑
j=i+1

< vTi , vj > xi · xj)

+λ(

n∑
i=1

||vi||2 +

n∑
i=1

ω2
i)

(6.10)

As confirmed in [117], the FM introduces higher-order interactions in terms
of latent vectors affected by categorical or tag data. This means that the FM
model goes beyond co-occurrences to find more robust relationships between
each feature’s latent representations.

6.2.6 Matrix Factorization with a Mixture of Tastes

The techniques presented above implicitly treat user tastes as uni-modal, i.e.,
a single latent vector. This may lead to a lack of nuance when representing the
user, where a dominant taste may overpower more niche ones. In addition,
this may reduce the quality of item representations, decreasing the separa-
tion in the embedding space between groups of items belonging to multiple
tastes/genres. [73] represented users as mixtures of several distinct tastes
(similar in spirit to a Gaussian mixture model for data density estimation),
represented by different taste vectors. Each taste vector is used alongside an
attention vector, which describes the confidence level at describing an item.
The dynamics of the mixture-of-taste model is formally:

rui = σ(Au · qTi) · (Uu · qTi) + b+ ωu + ωi (6.11)

CHAPTER 6. EXPERIMENTS 53

where Uu ∈ Rm×k matrix denotes the m tastes of user u, Au ∈ Rm×k matrix
denotes the affinities of each taste from Uu for particular items, and σ(xi) =

expxi∑
j expxj

is the soft-max activation function. Then σ(Au · qi) gives the mixture

probabilities and (Uu · qi) gives the recommendation scores for each mixture
component. The corresponding loss function is:

min
∑

(u,i)∈T

(rui − b− ωu − ωi − σ(Au · qTi) · (Uu · qTi))2

+λ(||Au||2 + ||Uu||2 + ||qi||2 + ω2
u + ω2

i)

(6.12)

6.2.7 Variational Matrix Factorization

The last variant of matrix factorization that we experimented with is called
variational matrix factorization [66,111]. While all of the models above focus
on optimizing a point estimate of the model parameters, variational infer-
ence focuses on optimizing a posterior (distribution). Loosely speaking, this
expresses a spectrum of model configurations that are consistent with the
data. Variational methods can provide a (principled) alternative form of reg-
ularization, measure what a model “does not know”, and reveal novel ways of
grouping (input) data.

We generalize the MF dynamics in Equation 6.3 variational by replacing
the point estimates with samples from a distribution. Formally, this means
that the variational MF model is:

rui = b+ ωu + ωi +GS(µu, vu) ·GS(µi, vi) (6.13)

where µu and vu denote the latent embeddings for the mean and variance
values of users, and µi and vi denote the latent embeddings for the mean
and variance values of items. GS(µ, v) for mean µ and variance v denotes
the Gaussian-Sampling Distribution, defined as follows (where N (0, 1) is the
Gaussian noise, which is a normal distribution with mean 0 and standard
deviation 1):

GS(µ, v) = µ+N (0, 1) ·
√
v (6.14)

6.2.8 MetaRec Matrix Factorization

For MetaRec-MF, our base model is a matrix factorization model with biases
defined as follows:

r̂ui = F (u, i|pu, qi, θ) = pu · qi + b+ wu + wi (6.15)

CHAPTER 6. EXPERIMENTS 54

Figure 6.2: MetaRec-MF uses a matrix factorization base model and trains it
according to our MAML process defined in Chapter 5.

where the k-dimensional user embedding vector is denoted by pu, the k-
dimensional item embedding vector is denoted by qi, and the bias involved
in the overall average rating is denoted by b. The parameters wi and wu in-
dicate the observed deviations of item i (item bias) and user u (user bias)
from the average, respectively. θ = {wu, wi, b}, therefore, denotes the model
parameters.

The loss function for training our MF process is defined as follows:

L(θ) =
1

|Dtrain|
∑

ru,i∈Dtrain

(ru,i − r̂u,i)2 + λ
1

2
||θ||22 (6.16)

where | ◦ | denotes cardinality (how many data points are in Dtrain), θ denotes
the model parameters, Dtrain denotes the training data, and λ denotes the
weight of the L2 regularization term.

Formally, our proposed MetaRec-MF consists of two training phases:

CHAPTER 6. EXPERIMENTS 55

Algorithm 1: MAML Algorithm for MetaRec-MF

Input : Trainable global parameters θ, user set U , local and global
hyper-parameters α, β

Output: Learned global parameters θ
1 Initialize θ randomly;
2 while not converged do
3 Sample a batch of users B from U ;
4 for user u ∈ B do
5 Evaluate the gradient ∇θLu(Fθ);
6 Perform the local update φu ← θ − α∇θLu(Fθ);

7 end
8 Perform global update θ ← θ − β

∑
u Lu(Fφu)

9 end

• Local updates: We randomly initialize the matrix factorization’s model
parameter vector θ. Then, we train it and calculate the loss Ltrain(θ)
from Equation 6.16 for the training test set Dtrain for each batch of
users. Finally, we locally update the parameter θ according to the loss.

• Global update: We want to identify a parameter vector θ that quickly
generalizes to new tasks, which is to recommend items to new users.
Each batch of users have their task-specific parameters φu, so we traverse
all users and calculate the loss Ltest(φ) from Equation 6.16 on the test
set Dtest. Finally, we sum up the losses and update the global parameter
space θ via stochastic gradient descent.

This training procedure is summarized for reference in Algorithm 1. An illus-
tration of the MetaRec-MF process is also included in Figure 6.2.

6.2.9 Experimental Results

For our experiments on MovieLens1M, we randomly separate user data into
75% training and 25% test sets. We train the models using ratings of the
training sample users and evaluate the models on the ratings of the test set
users. To evaluate the performance of the MF methods described earlier,
we use two popular metrics – the mean absolute error (MAE) and the mean
squared error (MSE). Given the true rating ru,i and the predicted rating r̂u,i

CHAPTER 6. EXPERIMENTS 56

Table 6.2: Matrix factorization experiments (lower MAE & MSE
values are better).

Models MAE MSE Training Time

MF 0.703 0.817 6m5s
MF-Bias 0.694 0.790 11m38s
MF-Side 0.691 0.784 13m34s

MF-Temporal 0.689 0.793 18m51s
FM 0.712 0.823 3m40s

MF-Mixture 0.687 0.788 13m44s
Variational-MF 0.707 0.839 16m51s

MetaRec-MF (Ours) 0.687 0.760 12m45s

on the test set Dtest. Formally, we define these metrics as follows:

MAE =
1

|Dtest|
∑

ru,i∈Dtest

|ru,i − r̂u,i|

MSE =
1

2|Dtest|
∑

ru,i∈Dtest

(ru,i − r̂u,i)2
(6.17)

Table 6.2 lists the MAE and MSE performance of all the Matrix Factor-
ization methods in the test set after 50 training epochs. The implementation
details are provided in the appendix (Section A.2). Our main observations are
as follows:

• MetaRec-MF slightly outperforms the other models on both MAE and
MSE metrics (the lower the values, the better the performance). This
proves the advantage of meta-optimization in this learning setting for
collaborative filtering systems.

• The training time for MetaRec-MF is slightly higher than MF-Bias, its
non-MAML equivalence. This hints at a potential tradeoff between per-
formance and compute cost.

• The FM model had the fastest training time, showcasing the benefits of
learning higher-order interactions.

• Adding more features to the MF equation improved performance but
led to a longer training time. For example, MF with side features took

CHAPTER 6. EXPERIMENTS 57

longer to train than vanilla MF, and MF with both side and temporal
features took longer to train than MF with just side features.

Considering that the base model for MetaRec-MF is a just matrix factorization
one with only biases, it would be interesting to see if adding more features,
replace the MF with a factorization machine, or using variational learning
could potentially lead to better performance or faster training time. We leave
this for future work.

6.3 Multi-Layer Perceptron Experiments

In this section, we explore the adaptation of the multi-layer perceptron (MLP)
to the recommendation task. As explained in Section 4.2, the MLP can
handle non-linear interactions between users and items to predict the user
preferences for the items. Particularly, we introduce five cutting-edge mod-
els and rigorously walk through their mathematical formulations: WideDeep,
DeepFM, xDeepFM, NeuralFM, and NeuralCF. We also previously discussed
these baseline models in our published article [75]. We then introduce our
method, MetaRec-MLP, which uses an MLP as its base model Fθ(pu, qi) to
drive the MetaRec process introduced in Chapter 5. Empirical results support
the proposed approach and provide further insights.

6.3.1 Wide and Deep Learning (WideDeep)

[27] proposed a framework that combines the strength of wide linear models
and deep network models to address memorization and generalization issues
in recommendation systems. This framework has been put into production as
the back-end system for Google Play, a massive-scale commercial application
store. As shown in Figure 6.3, the wide learning component is a single-layer
perceptron that memorizes sparse feature interactions through cross-product
feature transformations. The deep component is a multi-layer perceptron that
generalizes to previously unseen feature interactions via low-dimensional em-
beddings.

Formally, the wide learning component of the WideDeep system is defined
as follows:

y = W T
wide · x+ b (6.18)

where y is the prediction, x is a vector of features, W is a vector of model
parameters, and b is the bias. The feature set includes both raw inputs and
transformed inputs created with a cross-product transformation to capture
the correlation(s) between features. The deep learning component can be

CHAPTER 6. EXPERIMENTS 58

Figure 6.3: The spectrum of “wide and deep models” proposed in [27].

decomposed into a set of hidden layers, where each hidden layer performs the
following computation:

al+1 = f(W T
deep · al + bl) (6.19)

where l is the layer number, f is the activation function, al is the vector of
(input) activation values, bl is the vector of biases, and Wl is the vector of
model weights at the l-th layer.

The full WideDeep model is obtained by fusing together the two component
models described above:

P (Y = 1|X) = σ(W T
wide · x+W T

deep · alast + b) (6.20)

where Y is the binary class label, σ(.) is the sigmoid activation function, Wwide

is the vector of weights for the wide learning component, Wdeep is the vector
of weights applied on the final activation alast, and b is the bias term.

6.3.2 The Deep Factorization Machine (DeepFM)

As an extension of the wide and deep approach is the so-called deep factor-
ization machine [48], which is an end-to-end model that seamlessly integrates
an FM (the wide component) and an MLP (the deep component). Compared
to the WideDeep model, DeepFM does not require tedious feature engineer-
ing. As depicted in Figure 6.4, the FM component utilizes addition and inner
product operations to capture the linear and pairwise interactions between
features. The MLP leverages non-linear activations and a deep hierarchical
neural structure to model high-order interactions.

Formally, the inputs to the DeepFM are m-dimensional data records con-
sisting of pairs (u, i) which are the identity and features of user and item, as
well as a binary label y, which indicates user click behaviors (y = 1 means
the user clicked the item, and y = 0 otherwise). The task here is to build a
prediction model to estimate the probability that a user will click a specific
app in a given context.

CHAPTER 6. EXPERIMENTS 59

Figure 6.4: The wide and deep architecture of DeepFM in [48].

For any particular feature i, DeepFM uses a scalar wi to weigh i’s first-
order importance, and a latent vector Vi to measure i’s impact/interaction with
other features. DeepFM then feeds Vi into the wide component in order to
model the second-order feature interactions and next into the deep component
to model even higher-order feature interactions. All parameters (wi, Vi, as well
as the network parameters) are trained jointly under the full prediction model:

ŷ = σ(yFM + yDNN) (6.21)

where ŷ is the predicted click-through rate between 0 and 1, yFM is the output
of the wide FM component, yDNN is the output of the MLP component, and
σ(.) is the sigmoid activation function.

In the wide component, the FM measures both the linear (first-order)
interactions among features and the pairwise (second-order) feature interac-
tions (the inner product of latent feature vectors). This process can capture
the second-order feature interactions quite effectively when dealing with sparse
datasets. The output of the FM module is the sum of an addition unit and
several inner product units:

yFM =< w, x > +
∑
j1=1

∑
j2=j1+1

< Vi, Vj > xj1 · xj2 (6.22)

with given features i and j. The addition unit (the first term) captures the
importance of first-order features, and the inner product units (the second
term) capture the impact of second-order feature interactions. In the deep
component, the output of the MLP is simply:

yDNN = σ(W |H|+1 · aH + b|H|+1) (6.23)

CHAPTER 6. EXPERIMENTS 60

Figure 6.5: The architecture of xDeepFM in [85].

where σ is the sigmoid activation function, |H| is the number of hidden layers,
a is the vector output of the embedding layer, W is the vector of model weights,
and b is the bias vector.

6.3.3 The Extreme Deep Factorization Machine (xDeepFM)

As an extension of the DeepFM, the extreme deep factorization machine
(xDeepFM) [85] can jointly model explicit and implicit feature interactions.
The explicit high-order feature interactions are learned with a “compressed
interaction network” (CIN), while the implicit high-order feature infractions
are learned with, again, an MLP. This model also requires no manual feature
engineering and releases the experimenter from tedious feature engineering
work. The CIN module applies interactions at a vector-wise level. Therefore,
its complexity will not grow exponentially with the degree of interactions. Its
structure is similar to that of a recurrent neural network, in which the output
of the next hidden layer depends on the output of the previous hidden layer
(of the last time step) and additional inputs.

xDeepFM combines the CIN with a simple MLP under the wide and deep
learning framework (described earlier). This model captures both low-order
and high-order feature interactions as well as both implicit and explicit feature
interactions. The xDeepFM architecture is shown in Figure 6.5. Formally, the
resulting output unit of xDeepFM system is:

ŷ = σ(W T
linear · a+W T

MLP · xMLP +W T
CIN · p+ + b) (6.24)

CHAPTER 6. EXPERIMENTS 61

Figure 6.6: The architecture of the NeuralFM in [53].

where σ is the sigmoid activation function, a is the vector of raw features,
xMLP is the vector of outputs from the plain MLP, p+ is the vector of out-
puts from the CIN module. W and b are the (trainable) weights and biases
parameters, respectively.

The loss function for xDeepFM is the log loss with L2 regularization as
seen below:

L = − 1

N

N∑
i=1

yi log ŷi + (1− yi) log(1− ŷi) + λ||Θ||2 (6.25)

where N is the size of the training data and Θ is the set of parameters from
different components of xDeepFM.

6.3.4 The Neural Factorization Machine (NeuralFM)

Another parallel work that seamlessly integrates FMs and MLPs is the neural
factorization machine (or NeuralFM) [53], which brings together the effective-
ness of linear FMs with the strong representation ability of deep ANNs for
sparse prediction problems. As shown in Figure 6.6, the NeuralFM archi-
tecture’s key is an operation called bilinear-interaction pooling (BIP), which
enables an ANN to learn feature interactions at a low level. The non-linear
layers are stacked on top of the BIP layer, enabling effective modeling of non-
linear feature interactions. In contrast to traditional deep learning methods

CHAPTER 6. EXPERIMENTS 62

that simply concatenate or average embedding vectors in the low level, thanks
to the BIP layer, the NeuralFM can encode higher-order feature interactions,
strongly encouraging the “deeper” layers (those closer to the top) to learn
meaningful representations.

Formally, given a sparse input vector x, the model estimates a target as:

ŷ = w0 +
n∑
i=1

wi · xi + f(x) (6.26)

where the first term denotes the global bias of features, the second term de-
notes the global bias of feature weights, and the third term f(x) denotes an
MLP that models feature interactions. The design of f(x) consists of 4 layer
components: an embedding layer, a bilinear-interaction layer, (several) hidden
layers, and a final prediction layer. The embedding layer is a fully-connected
layer that projects each feature to a dense vector representation:

Vx = x1 · v1, x2 · v2, · · · , xn · vn (6.27)

where xi is the input feature vector and vi is the embedding vector for the
i-th feature.

Then NeuralFM feeds the embedding set Vx into a BIP layer, which in-
cludes a pooling operation that converts a set of embedding vectors to one
single vector:

fBI(Vx) =
n∑
i=1

n∑
j=i+1

(xi · vi) · (xj · vj) (6.28)

where vi · xj denotes the element-wise product of two vectors vi and xj . The
output of this pooling is a k-dimension vector that encodes the second-order
interactions between features in the embedding space. Above the BIP layer is
a stack of fully-connected hidden layers, which learn the higher-order interac-
tions between features:

z1 = σ1(W1 · fBI(Vx) + b1),

z2 = σ2(W2 · z1 + b2),

· · ·
zL = σL(WL · zL−1 + bL) (6.29)

where L is the number of hidden layers; WL, bL, and σL corresponds to the
weight matrix, bias vector, and activation function for the l-th layer, respec-
tively. The choice of activation functions could be the logistic link (sigmoid),

CHAPTER 6. EXPERIMENTS 63

Figure 6.7: The architecture of the NeuralCF in [54].

the hyperbolic tangent (tanh), or the linear rectifier (ReLU) to learn higher-
order, non-linear feature interactions. Lastly, the output vector of the last
hidden layer zL is transformed into the final prediction score (hT denotes the
neuron weights of the prediction layer):

f(x) = hT · zL. (6.30)

6.3.5 Neural Collaborative Filtering (NeuralCF)

The study [54] proposed using an MLP to model the user-item interaction rui,
as shown in Figure 6.7, where the output of one layer serves as the input to
the next one. Specifically, this entails the following:

• The bottom input layer consists of two feature vectors that describe user
u and item i, which can be customized to support a wide range of ways
of modeling users and items. In particular, the NeuralCF uses only the
identity of a user and an item as the input feature, transforming it into a
binarized sparse vector (through one-hot encoding). With such a generic
feature representation for inputs, this framework can be easily adjusted
to address the cold-start problem by using content features to represent
users and items.

• Above the input layer is the embedding layer, a fully connected layer
that projects the sparse representation to a dense vector. The obtained

CHAPTER 6. EXPERIMENTS 64

user/item embedding can be seen as the latent vector for user/item in
the context of the latent factor model.

• The user embedding and item embedding are then fed into a multi-layer
neural structure (termed Neural Collaborative Filtering layers) to map
the latent vectors to prediction scores. Each layer of neural collabora-
tive filtering layers can be customized to discover a specific type of latent
structure of user-item interactions. The last hidden layer’s dimension X
controls the model’s top-most representation complexity (smaller dimen-
sions yield more compact latent codes).

• The final output layer returns the predicted rating rui.

The above framework can be summed up with the scoring function below:

rui = F (P T · vUu , QT · vIi |P,Q, θF) (6.31)

where P ∈ RU×K and Q ∈ RI×K denote the latent factor matrix for users and
items, respectively. vUu and vIi denote the side information associated with
user and item features, respectively. θF denotes the model parameters of the
interaction function F . Since the function F is defined as an MLP, it can be
formulated in the following way:

F (P T · vUu , QT · vIi) = φout(φX(...φ2(φ1(P T · vUu , QT · vIi))...)) (6.32)

where φout and φx denote the mapping function for the output layer and the
x-th neural collaborative filtering layer, respectively.

6.3.6 The MetaRec Multi-Layer Perceptron (MetaRec-MLP)

Inspired by the NeuralCF framework presented above, the MetaRec-MLP em-
ploys a similar architecture to learn the user-item interaction rui, training
synaptic parameters according to the MetaRec MAML process (Figure 6.8).
Given user profile pu and item profile qi, we first construct an MLP (denoted
as F) to learn the user embedding eu and the item embedding ei:

eu = Fθu(pu)

ei = Fθi(qi)
(6.33)

where θu contains the user parameters and θi contains the item parameters
that make up the MLP meant to learn embeddings.

CHAPTER 6. EXPERIMENTS 65

Figure 6.8: MetaRec-MLP uses an MLP base model, inspired by NeuralCF
[54], and trains the full system acccording to the MAML process.

Next, we concatenate the two embeddings and feed the concatenation vec-
tor into another MLP to map the latent embeddings to prediction scores r̂ui:

x0 = [eu, ei],

x1 = σ(W1x0 + b1),

· · ·
xm = σ(Wmxm−1 + bm),

r̂ui = σ(Woxm + bo)

(6.34)

where [eu, ei] is the concatenation of user and item embeddings. W and b are
the weight matrices and bias vectors for the layers (σ is the activation).

Equation 6.34 can be condensed into this form (for a particular user u):

r̂ui = Fφu(eu, ei) (6.35)

where φu contains the task-specific parameters of the (second) MLP that pre-
dicts the ratings given by user u.

CHAPTER 6. EXPERIMENTS 66

Since we formulated the recommendation task as a binary-classification
problem (explained below in Section 6.3.7), the loss function will be the binary
cross-entropy (or Bernoulli log likelihood) loss, defined as follows:

Lu(Fθ,φu) = − 1

|B|
∑
i∈B

(rui log r̂ui) + (1− rui) log(1− r̂ui) (6.36)

for user u and item i, where B is a batch of items consumed by user u. The
full training process is formally presented in Algorithm 2, which, note, is very
similar to Algorithm 1. In essence, the process entails:

• Local updates: We randomly initialize the model parameters θ (equa-
tion 6.33) and the task-specific parameters φ (equation 6.35). Then, we
randomly sample a batch of users B. Next, we back-propagate the loss
from Equation 6.36 to locally update φu for each user u ∈ B.

• Global update: We globally update θ and φ based on the loss function
from Equation 6.36 on the test set.

Algorithm 2: MAML Algorithm for MetaRec-MLP

Input : Trainable global parameters θ, user set U , local and global
hyper-parameters α, β

Output: Learned global parameters θ
1 Initialize θ randomly;
2 Initialize φ randomly;
3 while not converged do
4 Sample a batch of users B from U ;
5 for user u ∈ B do
6 Evaluate the gradient ∇φuLu(Fθ,φu);
7 Perform the local update φu ← φu − α∇φuLu(Fθ,φu);

8 end
9 Perform global update θ ← θ − β

∑
u∇θLu(Fθ,φu) ;

10 Perform global update φ← φ− β
∑

u∇φLu(Fθ,φu)

11 end

6.3.7 Experimental Results

We evaluate our proposed MetaRec-MLP on the MovieLens1M benchmark
by comparing it to the WideDeep, DeepFM, xDeepFM, NeuralFM, and Neu-
ralCF baselines. Following the experiment setups of [27, 48, 53, 54, 85], we

CHAPTER 6. EXPERIMENTS 67

Table 6.3: Results For Our Multi-Layer Perceptron Experiments
(higher AUC values are better).

Models Test AUC Validation AUC Training Time

WideDeep 0.7991 0.7995 1h12m15s
DeepFM 0.7915 0.7918 1h10m50s
xDeepFM 0.7429 0.7408 2h15m17s
NeuralFM 0.7589 0.7560 1h36m0s
NeuralCF 0.7668 0.7673 54m15s

MetaRec-MLP (Ours) 0.8135 0.8127 1h05m3s

pre-processed the dataset to work with implicit feedback for the task of top-N
recommendation across various metrics. Specifically, we transformed the ex-
plicit ratings into implicit ratings, where each entry is labeled as 0 (less than
3) and 1 (greater than or equal to 3) indicating whether the user likes or does
not like the item.

For the users, we randomly separate them into 80% training, 10% valida-
tion, and 10% test sets. We train the models using ratings of the training users
and evaluate the models on the ratings of the validation users. To evaluate the
performance of these models on the unseen ratings of the test users, we use
a popular metric, Area Under the Receiver Operating Characteristics Curve
(AUC), which is equivalent to measuring the probability that the system will
be able to choose correctly between two items – one randomly selected from
the set of bad items, and one randomly selected from the set of good items.

Table 6.3 reports the AUC measurements of all of the MLP methods on the
validation and test sets after 100 training epochs. The implementation details
are provided in the Appendix (see Section A.3). Our main observations are as
follows:

• We can see that our proposed MetaRec-MLP outperforms other methods
in terms of AUC on both test and validation sets. This can be attributed
to the stronger capacity of meta-optimization approach in capturing user
preferences. For example, compared with NeuralCF which uses a similar
base recommendation algorithm, MeteRec-MLP shows a 6% lift in test
AUC performance.

• There is a trade-off in performance and training time for MetaRec-MLP.
Compared to NeuralCF, the training took longer. However, compared
to the rest of the baseline methods, MetaRec-MLP took less time to run.

CHAPTER 6. EXPERIMENTS 68

• Across the remaining methods, both WideDeep and DeepFM perform
better than other baselines, justifying the power of the wide and deep
architectural design.

• Surprisingly, xDeepFM, an extension of DeepFM, performed the worst
(6% worse than DeepFM in terms of test AUC), even though it is de-
signed to learn both explicit and implicit feature interactions between
user and items. We reckon that this is a case of over-fitting, considering
that it took the longest to train as well.

For possible improvements to our MetaRec-MLP, we believe that adding
more hidden layers to the base MLP model and tuning hyper-parameters more
carefully would yield further improvements in generalization ability (this is also
left to future work).

6.4 Autoencoder Experiments

In this section, we explore the adaptation of the autoencoder (AE) to the
recommendation task. As explained in Section 4.3, an AE can learn non-
linear user-item interactions efficiently and encode complex abstractions into
its hidden layers/representations. Particularly, we introduce four state-of-the-
art models and examine their architectural design: CDAE, MultVAE, SVAE,
and ESAE. We also previously discussed these baseline models in our published
article [76]. We then introduce our method, MetaRec-AE, which uses AE as
its base model Fθ(pu, qi) to instantiate our MetaRec framework (Chapter 5).
Finally, we close by presenting empirical results.

6.4.1 Collaborative Denoising Auto-encoder

Collaborative Denoising Auto-encoder [166] (CDAE) is a one-hidden-layer
ANN that applies a denoising autoencoder to the recommendation context.
A denoising autoencoder (DAE) [157] is an extension of the standard autoen-
coder, where it is trained to reconstruct the input data from its partially
corrupted version. Forcing the model to reconstruct corrupted inputs enables
the DAE to learn more robust features. Figure 6.9 displays a sample structure
of CDAE, which consists of 3 layers: the input, the hidden, and the output:

• There are a total of I + 1 nodes in the input layer. The first I nodes
represent user preferences, and each node of these I nodes corresponds
to an item. The last node is a user-specific node denoted by the red

CHAPTER 6. EXPERIMENTS 69

Figure 6.9: The basic CDAE architecture in [166].

node, which means different users have different nodes and associated
weights.

• Here yu is the I-dimensional feedback vector of user u on all the items
in I. yu is a sparse binary vector that only has non-zero values: yui = 1
if i has been rated by user u and yui = 0 otherwise.

• There are K + 1 nodes in the hidden layer. The blue K nodes are fully
connected to the nodes of the input layer. The additional pink node in
the hidden layer captures the bias effects.

• There are I nodes in the output layer, which are the reconstructed output
of the input yu. They are fully connected to the nodes in the hidden layer.

The corrupted input rcorr of CDAE is drawn from a conditional Gaussian
distribution p(rcorr|r). The reconstruction of rcorr is formulated as follows:

h(rcorr) = f(W2 · g(W1 · rcorr + Vu + b1) + b2) (6.37)

where W1 is the weight matrix corresponding to the encoder (going from the
input layer to the hidden layer). W2 is the weight matrix corresponding to the
decoder (going from the hidden layer to the output layer). Vu is the weight
matrix for the red user node. Both b1 and b2 are the bias vectors. We learn
the parameters of CDAE by minimizing the average reconstruction error as

CHAPTER 6. EXPERIMENTS 70

follows:

min
W1,W2,Vu,b1,b2

=
1

M

M∑
u=1

Ep(rcorr|r)[L(rcorr, h(rcorr))] + λ · Ω (6.38)

The loss function L(rcorr, h(rcorr)) in the Equation 6.38 can be square loss or
logistic loss (and Ω is the regularization penalty – the CDAE uses the square
L2 norm to control the model complexity). The system finally (1) applies
stochastic gradient descent to learn the models parameters, and (2) adopts
AdaGrad to automatically adapt the training step size (learning rate) during
the learning procedure.

At inference time, CDAE takes a users existing preference set (without
corruption) as input and recommends the items with the largest prediction
values on the output layer to that user.

6.4.2 Multinomial Variational Auto-encoder

MultVAE [86] is a variational autoencoder [67, 118] for collaborative filtering
based on implicit feedback (Figure 6.10). Additionally, the model uses the
multinomial likelihood to estimate its parameters, which was better well-suited
for modeling implicit feedback data than more popular likelihood functions
such as the logistic and Gaussian.

In particular, the user-by-item interaction matrix is the rating/preference
matrix R ∈ RU×I . The lower case ru is a bag-of-words vector with each item’s
preferences from user u. The generative process can be decomposed into the
following probabilistic graphical model:

zu ∼ N(0, IK),

π(zu) ∼ σ{Fθ(zu)},
ru ∼Mult(Nu, π(zu)).

(6.39)

For each user u, the model samples a K-dimensional latent representation
zu from a standard Gaussian prior. Then it transforms zu via a non-linear
function Fθ to produce a probability distribution over I items π(zu). Here, Fθ
is a multi-layer perceptron with parameters θ and σ is a softmax activation
function. Given the matrix R, the bag-of-words vector ru is sampled from a
multinomial distribution with probability π(zu).

The log-likelihood for user u (conditioned on the latent representation) is:

log pθ(ru|zu) =
∑
i

rui log πi(zu). (6.40)

CHAPTER 6. EXPERIMENTS 71

Figure 6.10: The MultVAE architecture in [86].

This multinomial likelihood rewards the model for putting probability mass
on the non-zero entries in ru. However, considering that π(zu) must sum to 1,
the items must compete for a limited budget of probability mass. Therefore,
the model should instead assign more probability mass to items with a higher
probability of being liked, making it suitable to achieve reliable performance
in the top-N ranking evaluation metric of recommendation systems.

To learn the generative model in Equation 6.39, we want to estimate θ by
approximating the intractable posterior distribution p(zu|ru) using variational
inference. This technique approximates the true intractable posterior with
a simpler variatonal distribution q(zu), which, in our case, is a fully diagonal
Gaussian distribution. The objective of variational inference is to optimize the
free variational parameters {µu, σ2

u} so that the Kullback-Leiber divergence
KL(q(zu)||p(zu|ru)) is minimized. The issue with variational inference is that
the number of parameters to optimize {µu, σ2

u} grows with the number of
users and items in the dataset. The VAE resolves this issue by replacing the
individual variational parameters with a data-dependent function (commonly
called the “inference model”) as follows:

gφ(ru) = [µφ(ru), σφ(ru)] (6.41)

This function is parametrized by φ in which both µφ(ru) and σφ(ru) are
vectors with K dimensions. The variational distribution is then set to be:

qφ(zu|ru) = N(µφ(ru), diag{σ2
φ(ru)}). (6.42)

Using the input ru, the inference model returns the corresponding variational
parameters of variational distribution qφ(zu|ru). When being optimized, this
variational distribution approximates the intractable posterior pφ(zu|ru).

CHAPTER 6. EXPERIMENTS 72

To learn latent-variable models with variational inference, we need to op-
timize a lower-bound on the data’s log marginal likelihood. The objective
function to maximize for user u now becomes:

log p(ru; θ) ≥ Eqφ(zu|ru)[log pθ(ru|zu)]−KL(qφ(zu|ru)||p(zu)) = L(ru; θ, φ)
(6.43)

The above objective is also called the evidence lower bound (ELBO). We
can intuitively obtain an estimate of ELBO by sampling zuqφ and optimizing
it with stochastic gradient ascent. However, we cannot easily differentiate
ELBO to get the gradients with respect to φ. The reparametrization trick
allows us to reformulate the model such that we can back-prop “through” the
noise component of the VAE:

zu = µφ(ru) + ε · σφ(ru) (6.44)

where we have isolated the stochasticity in the sampling process. Thus the
gradient with respect to φ can be back-propagated through the sampled zu.

From a different perspective, the first term of Equation 6.43 can be inter-
preted as a reconstruction error, while the second term of Equation 6.43 can
be interpreted as regularization. Thus, Equation 6.43 can be extended with
an additional parameter β to control the strength of the regularization:

Lβ(ru; θ, φ) = Eqφ(zu|ru)[log pθ(ru|zu)]− β ·KL(qφ(zu|ru)||p(zu)) (6.45)

where the parameter β engages a tradeoff between how well the model fits
the data and how close the approximate posterior stays to the prior during
learning. We can tune β via KL annealing, a common heuristic used for
training VAEs when there is concern that the model is under-utilized.

Given a users preference history ru, the model ranks all items based on
the un-normalized predicted multinomial probability Fθ(z). The latent repre-
sentation z for x is simply the mean of the variational distribution z = µφ(x).
Note that, with autoencoders, we can effectively make predictions for users by
evaluating two functions - the inference model (encoder) gφ(.) and the gen-
erative model (decoder) fθ(.). For latent factor collaborative filtering models
such as matrix factorization and multi-layer perceptron, when giving the pref-
erence/rating history of a user not present in the training data, we can only
obtain the latent factor for this user via some optimization process. This
makes autoencoders extra useful when predictions need to be made cheaply
with low latency and limited resources.

CHAPTER 6. EXPERIMENTS 73

6.4.3 Sequential Variational Auto-encoder

Sequential Variational Auto-encoder (SDAE) [123] is an extension of Mult-
VAE by exploring the rich information present in the past preference history.
SDAE is a recurrent version of the MultVAE, where instead of processing a
subset of the whole history regardless of temporal dependencies, the model
processes/consumes a sequence subset through a recurrent neural network
(RNN). The promise here is that handling temporal information can greatly
improve the accuracy of the VAE recommender.

Given a set of users U , a set of items I, and the user-item preference matrix
X with dimension U × I. The principal difference between the MultVAE and
the SVAE is that the SVAE considers precedence and temporal relationships
within the matrix X. Specifically, the SVAE embodies the assumptions that:

• X induces a natural ordering relationship between items: i <u j has the
meaning that xu,i > xu,j in the rating matrix.

• It assumes the existence of timing information T , where the term tu,i
represents the time when i was chosen by u. Then i <u j denotes that
tu,i > tu,j .

• It also introduces a temporal mark in the elements of xu : xu(t) repre-
sents the t-th item in Iu in the sorting induced by <u, whereas xu(1:t)

represents the sequence from xu(1) to xu(t).

Looking at the SVAE architecture, we can observe the recurrence relation
occurs in the layer upon which zu(t) depends. The basic idea behind SVAE
is that its latent variable should be able to express temporal dynamics, hence
capturing causal dependencies among preferences in a users history.

The SVAE framework models temporal dependencies by conditioning each
event on previous events. Given a sequence x(1:T , its probability is:

P (x(1:T)) =
T−1∏
t=0

P (xt+1|x(1:)). (6.46)

This probability represents a recurrent relationship between x(t+1 and x(1:t).
Thus, the model can process each time-step separately.

Recall the generative process in Equation 6.39. We can now integrate the
timestamp t and alter the process as follows:

zu(t) ∼ N(0, IK),

π(zu(t)) ∼ σ{Fθ(zu(t))},
xu(t) ∼Mult(Nu, π(zu(t))).

(6.47)

CHAPTER 6. EXPERIMENTS 74

Figure 6.11: The sample SVAE architecture in [123].

The full, joint likelihood of the model is:

P (xu(1:T), zu(1:T)) =
∏
t

P (xu(t)|zu(t))P (zu(t))) (6.48)

while the posterior likelihood can be approximated with a (completely) fac-
torized proposal distribution:

Qλ(zu(1:T)|xu(1:T)) =
∏
t

qλ(zu(t)|x(1:t−1)) (6.49)

where the right-hand side is a Gaussian distribution whose parameters µ and
σ depend upon the current history xu(1:t−1), by means of a recurrent layer ht:

µλ(t), σλ(t) = φλ(ht)

(ht) = RNNλ(ht−1, xu(t−1)).
(6.50)

CHAPTER 6. EXPERIMENTS 75

Figure 6.12: The item self-similarity layer in the ESAE architecture in [138].

Finally, the complete loss function that the SVAE optimizes is:

L(φ, λ,X) =
∑
u

Nu∑
t=1

{1

2

∑
k

(σλ,k(t)− 1− log σλ,k(t) + µλ,k(t)
2)

−Eε∼N(0,1)[logPφ(xu(t)|zλ(ε, t))]}.

(6.51)

6.4.4 Embarrassingly Shallow Auto-encoder

The Embarrassingly Shallow Auto-encoder (ESAE) [138] is a fascinating model
that we also want to bring into this discussion as it is quite relevant for the
recommendation task. The motivation here is that, according to the author,
deep models with a large number of hidden layers typically do not obtain a
notable improvement in ranking accuracy in collaborative filtering, compared
to deep models with only one, two, or three hidden layers. This is in stark
contrast to other problem domains such as computer vision.

ESAE is a linear model without a hidden layer. The (binary) input vector
X vector indicates which items a user has interacted with, and ESAEs objective
is to predict the best items to recommend to that user in the output layer (as
seen in the figure above). For implicit feedback, a value of 1 in X indicates
that the user interacted with an item, while a value of 0 in X indicates that
there is no observed interaction.

The item-item weight matrix B represents the parameters of ESAE. As
observed in Figure 6.12, we omit an input item’s self-similarity in the out-
put layer so that the ESAE can generalize effectively during the reconstruc-
tion step. Thus, the diagonal of this weight-matrix B is constrained to 0
(diag(B) = 0). For an item j and a user u, we want to predict Su,j , where
Xu,. refers to row u and B.,j refers to column j:

Su,j = Xu,. ·B.,j . (6.52)

CHAPTER 6. EXPERIMENTS 76

With respect to diag(B) = 0, ESAE has the following convex objective for
learning the weights B:

min
B
||X −X ·B||2F + λ · ||B||2F . (6.53)

Note, for this convex objective, the following:

• ||.|| denotes the Frobenius norm. This squared loss between the data X
and the predicted scores X ·B allows for a closed-form solution.

• The hyper-parameter λ is the L2-norm regularization of the weights B.

• The constraint of a zero diagonal helps avoid the trivial solution B = I
where I is the identity matrix.

Notably, ESAEs similarity matrix is based on the inverse of the given data
matrix. As a result, the learned weights can also be negative, and thus the
model can learn the dissimilarities between items (in addition to similar-
ities). This proves to be essential when attempting to obtain good ranking
accuracy. Furthermore, the data sparsity problem (there possibly exists only
a small amount of data available for each user) does not affect the uncertainty
in estimating weight matrix B, assuming that the number of users in the data
matrix X is sufficiently large.

6.4.5 MetaRec Autoencoder

As observed throughout Section 6.4, we can train autoencoders in an unsuper-
vised way to reproduce the input, here the ground-truth rating matrix. If we
can draw samples of user-item interaction outputs given the inputs, we can use
stochastic gradient descent (SGD) to train both the encoder and the decoder
simultaneously. One notable limitation of the autoencoder-based approach (in
an end-to-end training pipeline) is that training needs to happen from scratch
for each new user. With MetaRec-AE, we will eliminate this limitation by
incorporating the AE into our MetaRec’s MAML process. Rather than train-
ing a static model for all users, our meta-learning process will find a common
initialization vector that enables fast training on any user.

Let us quickly recall the rating-based collaborative filtering setting: we
have m users, n items, and a partially-observed user-item rating matrix R ∈
Rm×n. For each user u ∈ U = {1 · · ·m}, his/her rating can be represented by
a partially observed vector rui = (Ru1 · · ·Run) ∈ Rn. The goal is to design
an autoencoder that takes as input each partially observed rui, transforms it

CHAPTER 6. EXPERIMENTS 77

into a low-dimensional latent space, and reconstructs rui in the output space
to predict missing ratings.

Formally, the autoencoder minimizes the objective function below for a set
R of vectors in Rn:

1

m

m∑
u=1

L(rui − recon(rui; θ)) (6.54)

where recon(rui; θ) is the reconstructed rating rui ∈ Rn for activation functions
f(.), g(.):

recon(rui; θ) = f(W · g(V rui + µ) + b) (6.55)

where θ = {W,V, µ, b} denotes the transformations W ∈ Rn×k, V ∈ Rk×n and
the biases µ ∈ Rk, b ∈ Rn. n is the dimension of the input (and output) layer
(also the total number of items in the data), while k is the dimension of the
hidden layer. Given the learned parameters θ̂, our predicted rating is:

r̂ui = (recon(rui, θ̂)) (6.56)

Algorithm 3: Autoencoder-Based Collaborative Filtering

Input : user-based rating rui, training data Dtrain, step size
hyper-parameter α

Output: learned parameter vector θ
1 initialize θ(0);
2 i = 0;
3 while not converged do
4 draw a sample of users from Dtrain

5 update autoencoder with respect to that sample

6 θ(i+1) ← θ(i) − α∇Lu(θ(i))
7 i← i+ 1

8 end
9 θ ← θ(i)

Since we formulated the recommendation task as a binary-classification
problem (explained below in Section 6.4.6), MetaRec-AE minimizes the fol-
lowing (binary) cross-entropy loss :

Lu(θ) = − 1

m

m∑
u=1

||(rui log r̂ui) + (1− rui) log(1− r̂ui)||2O +
λ

2
· (||W ||22 + ||V ||22)

(6.57)

CHAPTER 6. EXPERIMENTS 78

Figure 6.13: The MAML setup in MetaRec-AE. We gradually update the
encoder and decoder parameters θ using φ so that they can be adapted to any
recommendation task with a few SGD steps.

where || · ||2O confirms that only the weights associated with observed inputs
are updated, || · ||22 denotes the squared L2 norm during regularization, and λ
is a regularization parameter that prevents potential for over-fitting. The full
training procedure is summarized for reference in Algorithm 3.

With MAML, we want MetaRec-AE to have faster convergence to an effec-
tive solution for any rating rui based on fewer iterations in algorithm 3. The
workflow is illustrated in figure 6.13.

Consider the recommendation task T u = (Du
train, D

u
test) for user u that

consists of a training set Du
train and a test set Du

test.

• Local updates: MetaRec-AE learns the autoencoder’s global parame-
ters θ shared across a set of meta-training tasks Ttrain and adapts them
to local task-specific parameters φu (with respect to the loss on Du

train).

• Global update: Next, on the test set Du
test, the loss under φu is calcu-

CHAPTER 6. EXPERIMENTS 79

lated and backward propagated to update the global θ.

Formally, MAML seeks to optimize this objective function:

min
θ

∑
Tu∈Ttrain

L(θ(0) − α∇θL(θ(0), Du
train), Du

test)

= min
∑

Tu∈Ttrain

L(φu, Du
test)

(6.58)

where L is the loss function, ∇ is the gradient, and α is the local learning
rate. The task-specific parameter φu = θ − α∇θL(θ,Du

train) is adapted to T u

after every gradient step from θ. The full training procedure is summarized
in Algorithm 4.

Algorithm 4: MAML Algorithm for MetaRec-AE

Input : Trainable global parameters θ, user set U , local and global
hyper-parameters α, β

Output: Learned global parameters θ
1 initialize θ(0);
2 i = 0;
3 while not converged do
4 for u ∈ U do
5 update autoencoder

6 adapt locally: φu = θ(0,i) − α∇θL(θ(0,i))

7 end

8 update globally: θ(0,i+1) ← θ(0,i) − β∇φL(φu)
9 i← i+ 1

10 end

For each task T u ∈ Ttest during meta-testing, MetaRec-AE adapts θ
learned during meta-training via a few gradient steps with respect to its train-
ing set Du

train. We then use the adapted parameters to predict the ratings in
the test set rui (i ∈ Du

test).

6.4.6 Experimental Results

We evaluate MetaRec-AE on MovieLens1M by comparing it with CDAE,
MultVAE, SVAE, and ESAE and assessing generalization ability. Following
the experimental setup of competing works [86,123,138,166], we pre-processed

CHAPTER 6. EXPERIMENTS 80

the dataset to work with implicit feedback for the task of top-k recommen-
dation across various metrics. In particular, we binarized the explicit ratings
data by considering only the user-item pairs where the ratings provided by the
user was greater than 3 on a range from 1 to 5. Additionally, we only kept
users who have interacted with at least 5 items.

For the top-k recommendation task, we present each user a set of k items
with highest probability of being preferred by that user, but are not interacted
by the user in the training data. We use the following three ranking-based
metrics: Precision@k, Recall@k, and NDCG@k. In our experiments, we set
k = 100 for all the models. For each user, these metrics compare the predicted
rank of the items in the test set with their ground-truth rank.

Precision@k for user u is the percentage of recommended items in the
top-k recommendation list that are actually preferred by user u:

Precision@k =
Hits@k

k
(6.59)

Recall@k for user u is the percentage of items actually preferred by user
u that exists in the top-k recommendation list:

Recall@k =
Hits@k

|R|
(6.60)

where Hits@k =
∑

i ri is the number of items present in the top-k recommen-
dation list that were actually preferred by user u, ri is the implicit rating (0
or 1) that user u gives to item i in the list, and R is the set of all items with
ri = 1.

NDCG@k (Normalized Discounted Cumulative Gain) gives additional
weight to the relevance of items on top of the top-k recommendation list:

NDCG@k =
DCGs@k

IDCG@k
(6.61)

where:

DCG@k =

k∑
i=1

ri
log(i+ 1)

IDCG@k =

|R|∑
i=1

1

log(i+ 1)

(6.62)

We randomly separate the ratings data into 80% training set, 10% valida-
tion set, and 10% test set. We train the models using ratings of the training

CHAPTER 6. EXPERIMENTS 81

Table 6.4: Results For Our Autoencoder Experiments (higher Pre-
cision, Recall, and NDCG values are better).

Models Precision@100 Recall@100 NDCG@100 Training Time

CDAE 8.94 41.37 25.28 17m29s
MultVAE 8.86 41.15 25.08 6m31s

SVAE 8.18 58.49 38.07 6h37m19s
ESAE 7.57 41.81 25.61 10m12s

MetaRec-AE (Ours) 8.34 55.12 33.06 18m24s

users and evaluate the models on the ratings of the validation users. We then
compute the metrics above by looking at how well the models ranks the unseen
ratings from the test users.

Table 6.4 lists the Precision@100, Recall@100, and NDCG@100 perfor-
mance of all the Autoencoder methods for the test set after 50 training epochs.
The implementation details are provided in the appendix (Section A.4). Our
main observations are the following:

• MetaRec-AE has an average performance across three metrics: third
highest for Precision@100 (7% lower than the highest baseline CDAE)
and second highest for Recall@100 and NDCG@100 (6% and 15% lower
than the highest baseline SVAE, respectively). The training time for
MetaRec-AE is also average among competing methods (roughly 3x
longer than the fastest baseline MultVAE).

• SVAE is the best performing model in Recall@100 and NDCG@100
metrics. This is due to the recurrent nature of the model, which handles
temporal information very effectively. However, it also took many order
of magnitude longer to train on a single CPU device (22x longer than
MetaRec-AE).

• MultVAE took the shortest time to train, which illustrates the efficiency
of learning with variational inference.

• ESAE achieved higher Recall@100 and NDCG@100 metrics than both
CDAE and MultVAE, which is surprising given the fact that it is a linear
model. This brought up an interesting point that deep architectures are
often times not the best options for sparse datasets.

For possible improvements to our proposed MetaRec-AE, we believe that
adding more hidden layers between the encoder and the decoder of the base

CHAPTER 6. EXPERIMENTS 82

AE model and tuning hyper-parameters more carefully will improve the per-
formance. Furthermore, it would be interesting (in future work) to see if using
either a denoising AE, a variational AE, or a simple shallow AE as the base
model would yield better performance or faster training time.

Chapter 7

Conclusions

7.1 Summary and Contributions

In this thesis, we considered the problem of building collaborative filtering sys-
tems, aiming to find an effective way to recommend items for a particular user
based on the items previously rated by other users. In Chapter 2, we formally
defined the recommendation task and outlined a few modeling approaches to
consider when tackling this task. In Chapter 3, we presented a taxonomy of
meta-learning techniques and provided a comprehensive overview of each area.
In Chapter 4, we examined related work in the literature that was relevant to
our research.

After exploring the pertinent work in detail, we proposed the MetaRec
framework in Chapter 5, which embeds the Model-Agnostic Meta-Learning
algorithm (MAML for short) into the learning process of collaborative filtering.
The aim is to find a good set of model parameters such that one or a few
gradient steps can lead to effective generalization.

After presenting the MetaRec framework, we considered an array of differ-
ent experimental scenarios in Chapter 6. First, in the context of matrix factor-
ization models, we showed how adding meta-optimization could lead to better
performance while working with explicit feedback. Second, in the context
of multi-layer perceptron models, we showed how adding meta-optimization
could lead to competitive performance while working with implicit feedback.
Finally, in the context of autoencoder models, we showed how meta-learning
could adapt to a fairly complicated generative model quite well and achieve a
reasonable performance while working with implicit feedback.

Our contributions provide a new way of stating, formalizing, and address-
ing the challenge of obtaining strong accuracy in recommendations - whether

83

CHAPTER 7. CONCLUSIONS 84

with explicit feedback or implicit feedback. This thesis aimed to elaborate a
more comprehensive perspective that leverages learning from one recommen-
dation task to another, instead of learning from scratch as has been tradition-
ally the case in the field.

7.2 Discussion and Future Work

Similar to many academic endeavors, our research presented here results in
many more questions than answers. Below, we discuss several open questions
and future directions that we found compelling and worth pursuing.

7.2.1 More Complex Base Models and Better MAML Training
for MetaRec

As addressed in Section 3.4, MAML requires very deep neural architectures
to obtain good inner gradient updates effectively. We believe that using more
complex base models for MetaRec would lead to better performance (such as
using a multi-layer perceptron with multiple hidden layers for MetaRec-MLP
or an autoencoder with multiple layers between the encoding and decoding
phases for MetaRec-AE).

Furthermore, the original MAML algorithm used in MetaRec has several
issues. We consulted suggestions from [4] and proposed the following ideas to
improve MAML training:

• Training Instability: MAML training is sensitive to the choice of the
model architecture and hyper-parameter setup. For example, the insta-
bility might be due to vanishing or exploding gradients, especially in the
case of a very deep network. A fix for this issue would be to design a
multi-step loss optimization procedure (a similar idea is in [144]), which
computes the global loss after every local update.

• Second-Order Derivative Cost: MAML ignores the second-order
derivative cost, which could impair generalization. A fix for this is-
sue would be to apply derivative-order annealing. For example, if we
train MAML for 100 epochs, we use first-order gradients for the first 50
epochs and second-order gradients for the remaining 50 epochs.

• Fixed Learning Rates During Local and Global Updates: MAML
uses a fixed learning rate for all parameters and update steps, which
could damage generalization and convergence speed. Using a fixed learn-
ing rate requires multiple hyper-parameter searches to find the optimal

CHAPTER 7. CONCLUSIONS 85

choice, which is computationally expensive. A fix for this issue is to
learn the learning rate for each parameter in the base model and to
learn different learning rates for each adaptation that the base model
takes [84].

7.2.2 Other Meta-Learning Schemes For Recommendations

We focused on integrating MAML, an optimization-based meta-learning ap-
proach, for MetaRec. As extensively discussed in Chapter 3, black-box and
non-parametric schemes are two other forms of meta-learning. We think that
applying them to the context of collaborative filtering would be very interest-
ing. Specifically, we think that:

• Black-box meta-learning approaches can represent any function of
our training data. MAMO [31] is a successful attempt that uses memory-
augmented networks [126], a black-box architecture, for the recommen-
dation task. We believe other black-box architectures such as conditional
neural processes [39], Meta Network [101], and SNAIL [97] would serve
as promising candidates for automatic recommendation.

• Non-parametric meta-learning approaches do not involve any back-
propagation, so they are computationally fast and easy to optimize. We
have not seen any work that uses these approaches for the recommen-
dation task, so future work that applies non-parametric models like the
Siamese Network [69], the Matching Network [158], or the Prototypical
Network [136] to the collaborative filtering problem would potentially be
very promising.

7.2.3 Addressing The Scalability and Sparsity Challenges

Finally, as mentioned in Section 1.1.3, scalability and sparsity are two other
major challenges for collaborative filtering systems. In future work, we would
like to design evaluation settings that can quantitatively address these issues:

• For scalability,we view training time as a reliable proxy metric in the
sense that short training time correlates to better scalability. Through-
out our experiments with MetaRec, we observed a computational trade-
off between accuracy performance and computational cost. Thus, we
believe that better MAML training, as proposed above, can reduce com-
putational cost. Testing MetaRec on bigger datasets would justify this
hypothesis.

CHAPTER 7. CONCLUSIONS 86

• For sparsity, we would like to consider the experimental setup proposed
in [31, 80, 91]. More specifically, they considered the recommendation
performance on four scenarios: (1) warm users for warm items, (2) warm
users for cold items, (3) cold users for warm items, and (4) cold users
for cold items. According to their first comment time, the users in the
MovieLens dataset were classified into warm or cold categories. The
model would then be evaluated on these different scenarios - measuring
the recommendation performance for warm users and cold users.

Using algorithmic frameworks capable of leveraging other users’ preferences
instead of learning from scratch for each new, incoming user, recommenda-
tion systems will be better prepared to handle the diversity of real-world data
in production robustly. Ultimately, they will be better equipped to improve
themselves. More importantly, as recommendation systems improve and be-
come more prominent, remaining questions about societal issues such as fair-
ness, interpretability, and value alignment will need to be answered in the
decades to come.

Bibliography

[1] Roee Aharoni, Melvin Johnson, and Orhan Firat. Massively multilingual
neural machine translation. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1, pages 3874-3884., 2019.

[2] Kelsey Allen, Evan Shelhamer, Hanul Shin, and Joshua Tenenbaum.
Infinite mixture prototypes for few-shot learning. In Proceedings of the
36th International Conference on Machine Learning, PMLR 97:232-241,
2019.

[3] Asim Ansari, Skander Essegaier, and Rajeev Kohli. Internet recommen-
dations systems. In J. Marketing Research, pages 363-375, 2000.

[4] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train
your maml. In International Conference on Learning Conference, 2019.

[5] Esma Ameur, Gilles Brassard, Jos Fernandez, and Flavien Serge Mani
Onana. Alambic: a privacy-preserving recommender system for elec-
tronic commerce. In International Journal of Information Security, vol-
ume 7, issue 5, pages 307-334, 2008.

[6] Marko Balabanovic and Yoav Shoham. Fab: Content-based, collabora-
tive recommendation. In ACM Comm., volume 40, no. 3, pages 66-72,
1994.

[7] Chumki Basu, Haym Hirsh, and William Cohen. Recommendation as
classification: Using social and content-based information in recommen-
dation. In Recommender Systems. Papers from 1998 Workshop, Tech-
nical Report WS-98-08, AAAI Press, 1999.

[8] Zeynep Batmaz, Ali Yurekli, Alper Bilge, and Cihan Kaleli. A review
on deep learning for recommender systems: challenges and remedies. In
Artificial Intelligence Review, volume 52, page 137, 2019.

87

BIBLIOGRAPHY 88

[9] Harkirat Singh Behl, Atlm Gne Baydin, and Philip H.S. Torr. Alpha
maml: Adaptive model-agnostic meta-learning. In The 6th ICML Work-
shop on Automated Machine Learning, 2019.

[10] Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. On the
optimization of a synaptic learning rule. In Conference on Optimality
in Biological and Artificial Networks, 1992.

[11] David Bennock, Eric Horvitz, Steve Lawrence, and Lee Giles. Collab-
orative filtering by personality diagnosis: A hybrid memory and model
based approach. In Proc. International Joint Conf. Artificial Intelligence
Workshop: Machine Learning for Information Filtering, 1999.

[12] Shlomo Berkovsky, Tsvi Kuflik, and Francesco Ricci. Cross-technique
mediation of user models. In Proceedings of International Conference
on Adaptive Hypermedia and AdaptiveWeb-Based Systems, pages 21-30.
Dublin, 2006.

[13] Shlomo Berkovsky, Tsvi Kuflik, and Francesco Ricci. Cross-
representation mediation of user models. In User Modeling and User-
Adapted Interaction 19(1-2), pages 35-63, 2009.

[14] Shlomo Berkvosky, Yaniv Eytani, Tsvi Kuflik, and Francesco Ricci. En-
hancing privacy and preserving accuracy of a distributed collaborative
filtering. In RecSys 07: Proceedings of the 2007 ACM conference on
Recommender systems, pages 9-16. ACM Press, New York, NY, USA,
2007.

[15] Luca Bertinetto, Joo F. Henriques, Philip H.S. Torr, and Andrea
Vedaldi. Meta-learning with differentiable closed-form solvers. In In-
ternational Conference on Learning Representations, 2019.

[16] Homanga Bharadhwaj. Meta-learning for user cold-start recommen-
dation. In 2019 International Joint Conference on Neural Networks
(IJCNN), pages 1-8, 2019.

[17] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham
Gutiérrez. Recommender systems survey. Knowledge-based systems,
46:109–132, 2013.

[18] Erin Boyle and Jana Beck. Understanding latent style. In
https: // multithreaded. stitchfix. com/ blog/ 2018/ 06/ 28/

latent-style/ , 2018.

BIBLIOGRAPHY 89

[19] John Breese, David Heckerman, and Carl Kadie. Empirical analysis
of predictive algorithms for collaborative filtering. In Proc. 14th Conf.
Uncertainty in Artificial Intelligence, 1998.

[20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. In arXiv preprint
arXiv:2005.14165, 2020.

[21] Robin Burke. Knowledge-based recommender systems. In Encyclopedia
of Library and Information Systems, volume 69, supplement 32, Marcel
Dekker, 2000.

[22] John Canny. Collaborative filtering with privacy. In IEEE Symposium
on Security and Privacy, pages 45-57, 2002.

[23] Rich Caruana. Multitask learning. In Machine Learning 28, 4175.
https://doi.org/10.1023/A:1007379606734, 1997.

[24] Sotirios P Chatzis, Panayiotis Christodoulou, and Andreas S Andreou.
Recurrent latent variable networks for session-based recommendation. In
Proceedings of the 2nd Workshop on Deep Learning for Recommender
Systems, pages 38–45, 2017.

[25] Yves Chauvin and David E Rumelhart. Backpropagation: theory, archi-
tectures, and applications. Psychology press, 1995.

[26] Cen Chen, Peilin Zhao, Longfei Li, Jun Zhou, Xiaolong Li, and Minghui
Qiu. Locally connected deep learning framework for industrial-scale rec-
ommender systems. In WWW, 2017.

[27] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar
Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai,
and Mustafa Ispir. Wide and deep learning for recommender systems.
In RecSys, pages 7-10, 2016.

[28] Mark Claypool, Anuja Gokhale, Tim Miranda, Pavel Murnikov, Dmitry
Netes, and Matthew Sartin. Combining content-based and collaborative

BIBLIOGRAPHY 90

filters in an online newspaper. In Proc. ACM SIGIR ’99 Workshop
Recommender System: Algorithms and Evaluation, 1999.

[29] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks
for youtube recommendations. In RecSys, pages 191-198, 2016.

[30] Shuiguang Deng, Longtao Huang, Guandong Xu, Xindong Wu, and
Zhaohui Wu. On deep learning for trust-aware recommendations in so-
cial networks. In IEEE Transactions on Neural Networks and Learning
Systems, Volume 28, number 5, page 1164-1177, 2017.

[31] Manqing Dong, Feng Yuan, Lina Yao, Xiwei Xu, and Liming Zhu.
Mamo: Memory-augmented meta-optimization for cold-start recommen-
dation. In arXiv:2007.03183, 2020.

[32] Zhengxiao Du, Xiaowei Wang, Hongxia Yang, Jingren Zhou, and Jie
Tang. Sequential scenario-specific meta-learner for online recommenda-
tion. In The 25th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2019.

[33] Gintare Karolina Dziugaite and Daniel Roy. Neural network matrix
factorization. In arXiv preprint arXiv:1511.06443, 2015.

[34] Ali Elkahky, Yang Song, and Xiaodong He. A multi-view deep learning
approach for cross-domain user modeling in recommendation systems. In
Proceedings of the 24th International Conference on World Wide Web,
Florence, Italy, pages 278-288, 2015.

[35] Ignacio Fernández-Tob́ıas, Iván Cantador, Marius Kaminskas, and
Francesco Ricci. Cross-domain recommender systems: A survey of the
state of the art.

[36] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-
learning for fast adaptation of deep networks. In International Confer-
ence on Machine Learning, 2017.

[37] Chelsea Finn and Sergey Levine. Meta-learning and universality: Deep
representations and gradient descent can approximate any learning al-
gorithm. In International Conference on Learning Conference, 2018.

[38] Victor Garcia and Joan Bruna. Few-shot learning with graph neural
networks. In International Conference on Learning Conference, 2018.

BIBLIOGRAPHY 91

[39] Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ra-
malho, David Saxton, Murray Shanahan, Yee Whye Teh, Danilo
Rezende, and S. M. Ali Eslami. Conditional neural processes. In Proceed-
ings of the 35th International Conference on Machine Learning, PMLR
80:1704-1713, 2018.

[40] Thomas George and Srujana Merugu. A scalable collaborative filter-
ing framework based on co-clustering. In Proceedings of the 5th IEEE
Conference on Data Mining (ICDM), pages 625-628, 2005.

[41] Song Jie Gong, Hong Wu Ye, and Ya Dai. Combining svd and item-
based recommender in collaborative filtering. In Second International
Workshop on Knowledge Discovery and Data Mining, pages 769-772,
2009.

[42] Nathaniel Good, Ben Schafer, Joseph Konstan, Al Borchers, Badrul
Sarwar, Jon Herlocker, and John Riedl. Combining collaborative filtering
with personal agents for better recommendations. In Prof. Conf. Am.
Assoc. Artificial Intelligence, pages 439-446, 1999.

[43] Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas
Griffiths. Recasting gradient-based meta-learning as hierarchical bayes.
In Proceedings of the International Conference on Learning Representa-
tions, 2018.

[44] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech
recognition with deep recurrent neural networks. In 2013 IEEE inter-
national conference on acoustics, speech and signal processing, pages
6645–6649. IEEE, 2013.

[45] Prince Grover. Various implementations of collabora-
tive filtering. In https: // towardsdatascience. com/

various-implementations-of-collaborative-filtering , 2017.

[46] Naiyang Guan, Dacheng Tao, Zhigang Luo, and Bo Yuan. Nenmf: An
optimal gradient method for non-negative matrix factorization. In IEEE
Transactions on Signal Processing, Volume 60, Number 6, pages 2882-
2898, 2012.

[47] Asela Gunawardana and Christopher Meek. Tied boltzmann machines
for cold start recommendations. In RecSys, pages 19-26, 2008.

BIBLIOGRAPHY 92

[48] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang
He. Deepfm: a factorization-machine based neural network for ctr pre-
diction. 2017.

[49] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang
He. Deepfm: A factorization-machine based neural network for ctr pre-
diction. In IJCAI, pages 2782-2788, 2017.

[50] Peng Hang, Bo Xie, Fan Yang, and Ruimin Shen. A scalable p2p rec-
ommender system based on distributed collaborative filtering. In Expert
Systems with Applications, 27(2):203-210, 2004.

[51] Maxwell Harper and Joseph Konstan. The movielens datasets: History
and context. In ACM Transactions on Interactive Intelligent Systems,
Article No. 19, 2015.

[52] James Harrison, Apoorva Sharma, and Marco Pavone. Meta-learning
priors for efficient online bayesian regression. In Workshop on the Algo-
rithmic Foundations of Robotics, 2018.

[53] Xiangnan He and Tat-Seng Chua. Neural factorization machines for
sparse predictive analytics. 2017.

[54] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-
Seng Chua. Neural collaborative filtering. In WWW, pages 173-182,
2017.

[55] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos
Tikk. Session-based recommendations with recurrent neural networks.
arXiv preprint arXiv:1511.06939, 2015.

[56] Balázs Hidasi, Massimo Quadrana, Alexandros Karatzoglou, and
Domonkos Tikk. Parallel recurrent neural network architectures for
feature-rich session-based recommendations. Proceedings of the 10th
ACM Conference on Recommender Systems, page 241248, 2016.

[57] Geoffrey E Hinton. Boltzmann machine. Scholarpedia, 2(5):1668, 2007.

[58] Geoffrey E Hinton. Deep belief networks. Scholarpedia, 4(5):5947, 2009.

[59] Geoffrey E Hinton. A practical guide to training restricted boltzmann
machines. In Neural networks: Tricks of the trade, pages 599–619.
Springer, 2012.

BIBLIOGRAPHY 93

[60] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimen-
sionality of data with neural networks. science, 313(5786):504–507, 2006.

[61] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Be-
longie, and Deborah Estrin. Collaborative metric learning. In WWW,
pages 193-201, 2017.

[62] Liang Hu, Jian Cao, Guandong Xu, Longbing Cao, Zhiping Gu, and Wei
Cao. Deep modeling of group preferences for group-based recommenda-
tion. In AAAI, 2014.

[63] Markus Jessenitschnig and Markus Zanker. A generic user modeling
component for hybrid recommendation strategies. In E-Commerce Tech-
nology, IEEE International Conference, pages 337-344, 2009.

[64] Donghyun Kim, Chanyoung Park, Jinoh Oh, and Hwanjo
Yu. Deep hybrid recommender systems via exploiting docu-
ment context and statistics of items. In Inf Sci 417:72-87,
https://doi.org/10.1016/j.ins.2017.06.026, 2017.

[65] Jaehong Kim, Sangyeul Lee, Sungwan Kim, Moonsu Cha, Jung Kwon
Lee, Youngduck Choi, Yongseok Choi, Dong-Yeon Cho, and Jiwon Kim.
Auto-meta: Automated gradient based meta learner search. In Work-
shop on Meta-Learning at NeurIPS, 2018.

[66] Yong-Deok Kim and Seungjin Choi. Scalable variational bayesian ma-
trix factorization with side information. In Artificial Intelligence and
Statistics, pages 493–502, 2014.

[67] Diederik Kingma and Max Welling. Auto-encoding variational bayes. In
arXiv preprint arXiv:1312.6114, 2013.

[68] Alfred Kobsa. Generic user modeling systems. In P. Brusilovsky, A.
Kobsa,W. Nejdl (eds.) The Adaptive Web, Lecture Notes in Computer
Science, volume 4321, pages 136-154. Springer, 2007.

[69] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neu-
ral networks for one-shot image recognition. In Proceedings of the 32nd
International Conference on Machine Learning, 2015.

[70] Yehuda Koren. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In SIGKDD, pages 426-434, 2008.

BIBLIOGRAPHY 94

[71] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization
techniques for recommender systems. In IEEE Computer Society 0018-
9162/09, pages 42-49, 2009.

[72] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. Communications of
the ACM, 60(6):84–90, 2017.

[73] Maciej Kula. Mixture-of-tastes models for representing users with di-
verse interests. 2017.

[74] Shyong Lam, Dan Frankowski, and John Riedl. Do you trust your rec-
ommendations? an exploration of security and privacy issues in recom-
mender systems. In G. Muller (ed.) ETRICS, Lecture Notes in Computer
Science, volume 3995, pages 14-29. Springer, 2006.

[75] James Le. The 5 variants of multi-layer perceptron for collaborative
filtering. In https: // jameskle. com/ writes/ rec-sys-part-5 , 2020.

[76] James Le. The 6 variants of autoencoders for collaborative filtering. In
https: // jameskle. com/ writes/ rec-sys-part-6 , 2020.

[77] James Le. The 7 variants of matrix factorization for collaborative filter-
ing. In https: // jameskle. com/ writes/ rec-sys-part-4 , 2020.

[78] James Le. Meta-learning is all you need. In https: // jameskle. com/

writes/ meta-learning-is-all-you-need , 2020.

[79] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[80] Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, and Sehee
Chung. Melu: Meta-learned user preference estimator for cold-start rec-
ommendation. In The 25th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2019.

[81] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano
Soatto. Meta-learning with differentiable convex optimization. In Pro-
ceeedings of the conference on Computer Vision and Pattern Recognition,
2019.

[82] Sheng Li, Jaya Kawale, and Yun Fu. Deep collaborative filtering via
marginalized denoising autoencoder. In CIKM, pages 811-820, 2015.

BIBLIOGRAPHY 95

[83] Xiaopeng Li and James She. Collaborative variational autoencoder for
recommender systems. In SIGKDD, 2017.

[84] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning
to learn quickly for few-shot learning. In arXiv ePrint 1707.09835v2,
2017.

[85] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing
Xie, and Guangzhong Sun. xdeepfm: Combining explicit and im-
plicit feature interactions for recommender systems. In arXiv preprint
arXiv:1803.05170, 2018.

[86] Dawen Liang, Rahul Krishman, Matthew Hoffman, and Tony Jebara.
Variational autoencoders for collaborative filtering. In arXiv preprint
arXiv:1802.05814, 2018.

[87] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommen-
dations: Item-to-item collaborative filtering. IEEE Internet computing,
7(1):76–80, 2003.

[88] Zhaoyang Liu, Haokun Chen, Fei Sun, Xu Xie, Jinyang Gao, Bolin Ding,
and Yanyan Shen. Intent preference decoupling for user representation
on online recommender system. In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, 2020.

[89] Gilles Louppe. Collaborative filtering: Scalable approaches using re-
stricted boltzmann machine. In Master’s Thesis, University of Liege,
2010.

[90] Xugang Lu, Yu Tsao, Shigeki Matsuda, and Chiori Hori. Speech en-
hancement based on deep denoising autoencoder. In Interspeech, pages
436-440, 2013.

[91] Yuanfu Lu, Yuan Fang, and Chuan Shi. Meta-learning on heterogeneous
information networks for cold-start recommendation. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 2020.

[92] Mi Luo, Fei Chen, Pengxiang Cheng, Zhenhua Dong, Xiuqiang He, Jiashi
Feng, and Zhenguo Li. Metaselector: Meta-learning for recommendation
with user-level adaptive model selection. In Proceedings of The Web
Conference 2020, 2020.

BIBLIOGRAPHY 96

[93] Lorraine McGinty and Barry Smyth. On the role of diversity in con-
versational recommender systems. In A. Aamodt, D. Bridge, K. Ashley
(eds.) ICCBR 2003, the 5th International Conference on Case-Based
Reasoning, pages 276-290. Trondheim, Norway, 2003.

[94] David McSherry. Diversity-conscious retrieval. In S. Craw, A. Preece
(eds.) Advances in Case-Based Reasoning, Proceedings of the 6th Euro-
pean Conference on Case Based Reasoning, ECCBR 2002, pages 219-
233. Springer Verlag, Aberdeen, Scotland, 2002.

[95] Frank McSherry and Ilya Mironov. Differentially private recommender
systems: Building privacy into the netflix prize contenders. In KDD
09: Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 627-636. ACM, New York,
NY, USA, 2009.

[96] Prem Melville, Raymond Mooney, and Ramadass Nagarajan. Content-
boosted collaborative filtering for improved recommendations. In Proc.
18th Nat’l Conf. Artificial Intelligence, 2002.

[97] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A
simple neural attentive meta-learner. In Proceedings of the International
Conference on Learning Representations, 2018.

[98] Niyas Mohammed. How to autoencode your pokmon. In https: //

medium. com/ hackernoon/ how-to-autoencode-your-pokemon , 2017.

[99] Awhan Mohanty. Multi layer perceptron (mlp) models on
real world banking data. In https: // becominghuman. ai/

multi-layer-perceptron-mlp-models-on-real-world-banking-data ,
2019.

[100] Miquel Montaner, Beatriz Lpez, and Josep Llus de la Rosa. A taxonomy
of recommender agents on the internet. In Artificial Intelligence Review
19(4), pages 285-330, 2003.

[101] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In Proceedings of
the 34th International Conference on Machine Learning, Sydney, Aus-
tralia, PMLR 70, 2017.

[102] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-
learning algorithms. In arXiv ePrint 1803.02999, 2018.

BIBLIOGRAPHY 97

[103] Alexander G Ororbia II, Tomas Mikolov, and David Reitter. Learning
simpler language models with the differential state framework. Neural
computation, 29(12):3327–3352, 2017.

[104] Yuanxin Ouyang, Wenqi Liu, Wenge Rong, and Zhang Xiong.
Autoencoder-based collaborative filtering. In International Conference
on Neural Information Processing, pages 284-291, 2014.

[105] Weike Pan, Evan Wei Xiang, Nathan Nan Liu, and Qiang Yang. Transfer
learning in collaborative filtering for sparsity reduction. 2010.

[106] Manos Papagelis, Ioannis Rousidis, Dimitris Plexousakis, and Elias
Theoharopoulos. Incremental collaborative filtering for highly-scalable
recommendation algorithms. In M.S. Hacid, N.V. Murray, Z.W. Ras, S.
Tsumoto (eds.) ISMIS, Lecture Notes in Computer Science, vol. 3488,
pages 553-561. Springer, 2005.

[107] Michael Pazzani. A framework for collaborative, content-based, and de-
mographic filtering. In Artificial Intelligence Rev., pages 393-408, 1999.

[108] Xishuai Peng, Yuan xiang Li, Xian Wei, Jianhua Luo, and Yi Lu Mur-
phey. Traffic sign recognition with transfer learning. In Proceedings of
the 2017 IEEE Symposium Series on Computational Intelligence (SSCI),
pages 1-7, 2017.

[109] Huseyin Polat and Wenliang Du. Svd-based collaborative filtering with
privacy. In ACM Symposium on Applied Computing, 2005.

[110] Alexandrin Popescul, Lyle Ungar, David Pennock, and Steve Lawrence.
Probabilistic models for unified collaborative and content-based recom-
mendation in sparse-data environments. In Proc. 17th Conf. Uncertainty
in Artificial Intelligence, 2001.

[111] Ian Porteous, Arthur U Asuncion, and Max Welling. Bayesian matrix
factorization with side information and dirichlet process mixtures. 2010.

[112] Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and Paolo
Cremonesi. Personalizing session-based recommendations with hierar-
chical recurrent neural networks. In Proceedings of the Eleventh ACM
Conference on Recommender Systems, pages 130–137, 2017.

[113] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. Language models are unsupervised multitask learners.
In Technical Report, OpenAI, 2019.

BIBLIOGRAPHY 98

[114] Aravind Rajeswaran, Chelsea Finn, Sham Kakade, and Sergey Levine.
Meta-learning with implicit gradients. In Proceedings of the 33rd Con-
ference on Neural Information Processing Systems, 2019.

[115] Naren Ramakrishnan, Benjamin Keller, Batul Mirza, Ananth Grama,
and George Karypis. When being weak is brave: Privacy in recommender
systems. In IEEE Internet Computing, 2001.

[116] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot
learning. In International Conference on Learning Conference, 2017.

[117] Steffen Rendle. Factorization machines. In 2010 IEEE International
Conference on Data Mining, pages 995–1000. IEEE, 2010.

[118] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra.
Stochastic backpropagation and approximate inference in deep gener-
ative models. In Proceeedings of the 31st International Conference on
Machine Learning, pages 1278-1286, 2014.

[119] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul Kantor. Rec-
ommender systems handbook. In Springer, ISBN: 978-0-387-85819-7,
2011.

[120] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua
Bengio. Contractive auto-encoders: Explicit invariance during feature
extraction. In ICML, pages 833-840, 2011.

[121] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-
ing representations by back-propagating errors. nature, 323(6088):533–
536, 1986.

[122] Massimiliano Ruocco, Ole Steinar Lillestøl Skrede, and Helge Langseth.
Inter-session modeling for session-based recommendation. In Proceedings
of the 2nd Workshop on Deep Learning for Recommender Systems, pages
24–31, 2017.

[123] Noveen Sachdeva, Giuseppe Manco, Ettore Ritacco, and Vikram Pudi.
Sequential variational autoencoders for collaborative filtering. In Pro-
ceedings of the Twelfth ACM International Conference on Web Search
and Data Mining - WSDM 19. ACM Press, 2019.

[124] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factoriza-
tion. In Proceedings of Neural Information Processing Systems Founda-
tion, 2017.

BIBLIOGRAPHY 99

[125] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted
boltzmann machines for collaborative filtering. In ICML, pages 791-798,
2007.

[126] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra,
and Timothy Lillicrap. One-shot learning with memory-augmented neu-
ral networks. In Proceedings of the 33rd International Conference on
Machine Learning, New York, NY, USA, 2016.

[127] Badrul Sarwar, Joseph Konstan, and John Riedl. Distributed recom-
mender systems for internet commerce. In M. Khosrow-Pour (ed.) En-
cyclopedia of Information Science and Technology (II), pages 907-911.
Idea Group, 2005.

[128] Andrew Schein, Alexandrin Popescu, David Pennock, and Lyle Ungar.
Methods and metrics for cold-start recommendations. In Proc. 25th
Ann. Int’l ACM SIGIR Conf., 2002.

[129] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie.
Autorec: Autoencoders meet collaborative filtering. In WWW, pages
111-112, 2015.

[130] Joan Serra and Alexandros Karatzoglou. Getting deep recommenders fit:
Bloom embeddings for sparse binary input/output networks. In RecSys,
pages 279-287, 2017.

[131] Guy Shani and Asela Gunawardana. Evaluating recommendation sys-
tems. In Recommender systems handbook, pages 257–297. Springer, 2011.

[132] Upendra Shardanand and Pattie Maes. Social information filtering: Al-
gorithms for automating ’word of mouth’. In Prof. Conf. Human Factors
in Computing Systems, 1995.

[133] Xiaoxuan Shen, Baolin Yi, Zhaoli Zhang, Jiangbo Shu, and Hai Liu. Au-
tomatic recommendation technology for learning resources with convo-
lutional neural network. In Proceedings of the International Symposium
on Educational Technology, page 30-34, 2016.

[134] Donghyuk Shin, Suleyman Cetintas, Kuang-Chih Lee, and Inderjit
Dhillon. Tumblr blog recommendation with boosted inductive matrix
completion. In Proceedings of the 24th ACM Conference on Information
and Knowledge Management, page 203-212, 2015.

BIBLIOGRAPHY 100

[135] Reza Shokri, Pedram Pedarsani, George Theodorakopoulos, and Jean-
Pierre Hubaux. Preserving privacy in collaborative filtering through
distributed aggregation of offline profiles. In RecSys 09: Proceedings
of the third ACM conference on Recommender systems, pages 157-164.
ACM, New York, NY, USA, 2009.

[136] Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks
for few-shot learning. In Proceedings of the 31st Conference on Neural
Information Processing Systems, 2017.

[137] Ian Soboroff. Combining content and collaboration in text filtering. In
Proc. Int’l Joint Conf. Artificial Intelligence Workshop: Machine Learn-
ing for Information Filtering, 1999.

[138] Harald Steck. Embarrassingly shallow autoencoders for sparse data. In
The World Wide Web Conference 2019. ACM Press, 2019.

[139] Florian Strub, Romaric Gaudel, and Jeremie Mary. Hybrid recommender
system based on autoencoders. In Proceedings of the 1st Workshop on
Deep Learning for Recommender System, pages 11-16, 2016.

[140] Florian Strub and Jeremie Mary. Collaborative filtering with stacked
denoising autoencoders and sparse inputs. In NIPS Workshop, 2015.

[141] Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative
filtering techniques. Advances in artificial intelligence, 2009, 2009.

[142] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H.S. Torr,
and Timothy M. Hospedales. Learning to compare: Relation network
for few-shot learning. In Proceeedings of the conference on Computer
Vision and Pattern Recognition, 2018.

[143] Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text
with recurrent neural networks. In ICML, 2011.

[144] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1–9, 2015.

[145] Nima Taghipour and Ahmad Kardan. A hybrid web recommender sys-
tem based on q-learning. In Proceedings of the 2008 ACM symposium on
applied computing, pages 1164-1168. ACM, New York, NY, USA, 2008.

BIBLIOGRAPHY 101

[146] Yong Kiam Tan, Xinxing Xu, and Yong Liu. Improved recurrent neural
networks for session-based recommendations. In Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems, pages 17–22,
2016.

[147] Jiaxi Tang and Ke Wang. Ranking distillation: Learning compact
ranking models with high performance for recommender systems. In
SIGKDD, 2018.

[148] Nguyen Thai-Nghe, Lucas Drumond, Tomas Horvath, Alexandros
Nanopoulos, and Lars Schmidt-Thieme. Matrix and tensor factorization
for predicting student performance. In Proceedings of the 3rd Interna-
tional Conference on Computer Supported Education, 2011.

[149] Sebastian Thrun. Is learning the n-th thing any easier than learning the
first? In NIPS’95: Proceedings of the 8th International Conference on
Neural Information Processing Systems, pages 640-646, 1995.

[150] Tran The Truyen, Dinh Quoc Phung, and Svetha Venkatesh. Ordinal
boltzmann machines for collaborative filtering. In Proceedings of the
25th Conference on Uncertainty in AI, pages 548-556, 2009.

[151] Trinh Xuan Tuan and Tu Minh Phuong. 3d convolutional networks
for session-based recommendation with content features. In Proceedings
of the 11th ACM Conference on Recommender Systems, page 138-146,
2017.

[152] Moshe Unger, Ariel Bar, Bracha Shapira, and LiorRokach. Towards la-
tent context-aware recommendation systems. In Knowledge-Based Sys-
tems, Volume 104, page 165-178, 2016.

[153] Aaron van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep
content-based music recommendation. In Proceedings of the 26th Inter-
national Conference on NIPS, page 2643-2651, 2013.

[154] Saúl Vargas. Novelty and diversity enhancement and evaluation in rec-
ommender systems. 2015.

[155] Manasi Vartak, Arvind Thiagarajan, Conrado Miranda, Jeshua Brat-
man, and Hugo Larochelle. A meta-learning perspective on cold-start
recommendations for items. In Advances in Neural Information Process-
ing Systems 30, 2017.

BIBLIOGRAPHY 102

[156] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In arXiv ePrint 1706.03762, 2017.

[157] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine
Manzagol. Extracting and composing robust features with denoising
autoencoders. In Proceedings of the 25th international conference on
Machine learning, pages 1096–1103, 2008.

[158] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu,
and Daan Wierstra. Matching networks for one shot learning. In Proceed-
ings of the 30th Conference on Neural Information Processing Systems,
2016.

[159] Manolis Vozalis and Konstantinos Margaritis. A recommender system
using principal component analysis. In 11th Panhellenic Conference inn
Informatics, pages 271-283, 2007.

[160] Manolis Vozalis and Konstantinos Margaritis. Using svd and demo-
graphic data for the enhancement of generalized collaborative filtering.
In An International Journal of Information Sciences, Volume 177, pages
3017-3037, 2007.

[161] Hao Wang, Xingjian Shi, and Dit-Yan Yeung. Relational stacked de-
noising autoencoder for tag recommendation. In Proceedings of the 29th
AAAI conference on Artificial Intelligence, page 3052-3058, 2015.

[162] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learn-
ing for recommender systems. In SIGKDD, pages 1235-1244, 2015.

[163] Xinxi Wang and Ye Wang. Improving content-based and hybrid music
recommendation using deep learning. In Proceedings of the 22nd ACM
international conference on Multimedia, pages 627636, 2014.

[164] Yang Wang and Alfred Kobsa. Performance evaluation of a privacy-
enhancing framework for personalized websites. In G.J. Houben, G.I.
McCalla, F. Pianesi, M. Zancanaro (eds.) UMAP, Lecture Notes in
Computer Science, volume 5535, pages 78-89. Springer, 2009.

[165] Sai Wu, Weichao Ren, Chengchao Yu, Gang Chen, Dongxiang Zhang,
and Jingbo Zhu. Personal recommendation using deep recurrent neural
networks in netease. In 2016 IEEE 32nd international conference on
data engineering (ICDE), pages 1218–1229. IEEE, 2016.

BIBLIOGRAPHY 103

[166] Yao Wu, Christopher DuBois, Alice Zheng, and Martin Ester. Collabora-
tive denoising autoencoders for top-n recommender systems. In WSDM,
pages 153-162, 2016.

[167] Haochao Ying, Liang Chen, Yuwen Xiong, and Jian Wu. Collabora-
tive deep ranking: a hybrid pair-wise recommendation algorithm with
implicit feedback. In PAKDD, pages 555-567, 2016.

[168] Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang,
Pieter Abbeel, and Sergey Levine. One-shot imitation from observing
humans via domain-adaptive meta-learning. In Robotics: Science and
Systems 2018, 2018.

[169] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based
recommender system: A survey and new perspectives. ACM Computing
Surveys (CSUR), 52(1):1–38, 2019.

[170] Shuai Zhang, Lina Yao, and Xiwei Xu. Autosvd++: An efficient hybrid
collaborative filtering model via contractive autoencoders. 2017.

[171] Yang Zhang, Fuli Feng, Chenxu Wang, Xiangnan He, Meng Wang, Yan
Li, and Yongdong Zhang. How to retrain recommender system? a se-
quential meta-learning method. In SIGIR, 2020.

[172] Liang Zhao, Yang Wang, Daxiang Dong, and Hao Tian. Learning to
recommend via meta parameter partition. In arXiv:1912.04108, 2019.

[173] Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn
Andrews, Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi,
and Ed Chi. Recommending what video to watch next: A multitask
ranking system. In RecSys ’19: Proceedings of the 13th ACM Conference
on Recommender Systems, pages 43-51, 2019.

[174] Yin Zheng, Cailiang Liu, Bangsheng Tang, and Hanning Zhoi. Neural
autoregressive collaborative filtering for implicit feedback. In Proceedings
of the 1st Workshop on Deep Learning for Recommender Systems, page
2-6, 2016.

[175] Fengwei Zhou, Bin Wu, and Zhenguo Li. Deep meta-learning: Learning
to learn in the concept space. In arXiv ePrint 1802.03596, 2018.

[176] Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, and
Shimon Whiteson. Fast context adaptation via meta-learning. In Inter-
national Conference on Machine Learning, 2019.

Appendices

104

Appendix A

Appendix

A.1 Dataset Details

This includes the figures for section 6.1.
Figure A.1 shows a word-cloud visualization of the movie titles. We can

recognize that there are a lot of movie franchises in this dataset, as evidenced
by words like II and III... In addition to that, Day, Love, Life, Time, Night,
Man, Dead, and American are among the most commonly occuring words.

Figure A.2 displays the summary statistics and distribution of the ratings
data. It appears that users are quite generous in their ratings. The mean

Figure A.1: MovieLens1M movie titles in a word cloud

105

APPENDIX A. APPENDIX 106

rating is 3.58 on a scale of 5. Half the movies have a rating of 4 and 5. We
personally think that a 5-level rating skill was not a good indicator as people
could have different rating styles (i.e. person A could always use 4 for an
average movie, whereas person B only gives 4 out for their favorites). Each
user rated at least 20 movies, so we doubt the distribution could be caused
just by chance variance in the quality of movies.

Figure A.3 shows a word-cloud visualization of the movie genres. The top
5 genres are, in that respect order: Drama, Comedy, Action, Thriller, and
Romance.

Figure A.4 shows a subset of 20 movies with the highest rating.

Figure A.2: MovieLens1M rating distribution

Figure A.3: MovieLens1M movie genres in a word cloud

APPENDIX A. APPENDIX 107

A.2 Matrix Factorization Methods

A.2.1 Code

All the matrix factorization models are implemented with PyTorch 1.3.0 in
Python 3.6 and runs on a Macbook Pro with CPU computing. We used
PyTorch Ignite for model development and evaluation, NumPy and Pandas
for data manipulation, and TensorBoard for result visualization.

A.2.2 Parameter Configuration

We use a batch size of 1024 and adopt Adam with a learning rate of 0.01 to
optimize our baseline Matrix Factorization models for MovieLens. Here are
other configuration settings:

• For MF: the regularization rate is 0.000001 and the dimension of user

Figure A.4: MovieLens1M subset of movies with 5-star ratings

APPENDIX A. APPENDIX 108

and item embeddings is set to 10.

• For MF-Bias: the global regularization rate is 0.000001, the bias regular-
ization rate is 0.000001, and the dimension of user and item embeddings
is set to 10.

• For MF-Side: the global regularization rate is 0.000001, the bias regular-
ization rate is 0.000001, and the dimension of user and item embeddings
is set to 10.

• For MF-Temporal: the global regularization rate is 0.000001, the bias
regularization rate is 0.000001, the regularization rate for temporal fea-
tures is 0.000001, the regularization rate for user-temporal interaction is
0.000001, the dimension of user and item embeddings is set to 10, and
the dimension of temporal embedding is set to 2.

• For FM: the global regularization rate is 0.000001, the bias regularization
rate is 0.000001, and the dimension of user and item embeddings is set
to 10.

• For MF-Mixture: the global regularization rate is 0.000001, the bias reg-
ularization rate is 0.000001, the dimension of user and item embeddings
is set to 10, and the dimension of the taste and attention embeddings is
set to 4.

• For Variational-MF: the bias regularization rate is 0.000001, the KL-
divergence constant rate is 0.0000000001, and the dimension of user and
item embeddings is set to 10.

For MetaRec-MF: the global regularization rate is 0.000001, the bias reg-
ularization rate is 0.000001, the dimension of user and item embeddings is set
to 10, the local learning rate α is 0.0005, and the global learning rate β is
0.005. MetaRec-MF was trained on batches of size 1024.

A.3 Multi-Layer Perceptron Methods

A.3.1 Code

All the multi-layer perceptron models are implemented with PyTorch 1.3.0
in Python 3.6 and runs on a Macbook Pro with CPU computing. We used
PyTorch for model development and evaluation, NumPy and Pandas for data
manipulation, and Weights and Biases for result visualization.

APPENDIX A. APPENDIX 109

A.3.2 Parameter Configuration

We use a batch size of 512 and adopt Adam with a learning rate of 0.001
and weight decay of 0.000001 to optimize our baseline Multi-Layer Perceptron
models for MovieLens. Here are other configuration settings:

• For WideDeep: the dimension of user and item embeddings is set to 16,
the number of hidden layers is 16, the choice of activation function is
sigmoid, and the dropout rate is 0.5.

• For DeepFM: the dimension of user and item embeddings is set to 16,
the number of hidden layers is 16, the choice of activation function is
sigmoid, and the dropout rate is 0.5.

• For xDeepFM: the dimension of user and item embeddings is set to 16,
the number of hidden layers is 16, the input of the compressed interaction
module is (16, 16), the choice of activation function is sigmoid, and the
dropout rate is 0.5.

• For NeuralFM: the dimension of user and item embeddings is set to 64,
the number of hidden layers is 64, the choice of activation function is
sigmoid, and the dropout rate is 0.2.

• For NeuralCF: the dimension of user and item embeddings is set to 16,
the number of hidden layers is 16, the choice of activation function is
sigmoid, and the dropout rate is 0.5.

For MetaRec-MLP: the dimension of user and item embeddings is set to 16,
the number of hidden layers is 16, the choice of activation function is sigmoid,
the dropout rate is 0.5, the local learning rate α is 0.000005, and the global
learning rate β is 0.00005. MetaRec-MLP was trained on batches of size 512.

A.4 Autoencoders Methods

A.4.1 Code

All the autoencoder models are implemented with PyTorch 1.3.0 in Python 3.6
and runs on a Macbook Pro with CPU computing. We used PyTorch for model
development and evaluation, NumPy and Pandas for data manipulation, and
CometML for result visualization.

APPENDIX A. APPENDIX 110

A.4.2 Parameter Configuration

We adopt Adam with a learning rate of 0.001 to optimize our baseline Au-
toencoder models for MovieLens. Here are other configuration settings:

• For CDAE: the number of hidden layers is 50, the corruption ratio for
the data to the input layer is set to be 0.5, and the choice of activation
function is TanH. CDAE was trained on batches of size 512.

• For MultVAE: the dimension of the encoder module is 200, the dropout
rate is 0.5, and the KL-divergence annealing rate is 0.2. MultVAE was
trained on batches of size 512.

• For SVAE: the dimensions of two encoding layers are 150 and 64, the
recurrent layer is initialized as a Gated Recurrent Unit with 200 cells,
the size of the embedding layer is 256, and the number of latent factors
is 64. SVAE was trained on batches of size 1 (because we don’t pack
multiple sequences in the same batch).

• For ESAE: This is a linear model without a hidden layer. The closed-
form solution is derived from the model’s convex training objective.
ESAE was trained on batches of size 512.

For MetaRec-AE: the dimension of the encoder module is 500, the global
regularization rate is 0.001, the local learning rate α is 0.000005, and the global
learning rate β is 0.00005. MetaRec-AE was trained on batches of size 512.

