
Travel Time Optimization Problem via Ant Colony
and Genetic Evolution

James Le and Michael Peechatt
Bio-Inspired Intelligent Systems

Rochester Institute of Technology
Spring 2019

Abstract

Using a collection of New York City locations represented as longitude and latitude
coordinates, we search the solution space to find the most efficient traveling sales-
man path. By creating a regression model to solve the travel time cost between two
locations, we optimize the traveling salesman path using two biologically inspired
meta-heuristics: ant colony and genetic evolution. Our experimentation shows that
ant colony optimization performs better 30% better than genetic evolution.

1 Introduction

Urban transportation is going through a rapid and significant evolution. Since the birth of the Internet
and smartphones, we have become increasingly connected and are able to plan and optimize our daily
commute. Along with that, large amounts of data are gathered and used to improve the efficiency of
existing transportation systems. Real-time ride-sharing companies such as Uber and Lyft are using
this data to revolutionize the taxi industry, laying the ground for a more connected and centrally
controlled transportation structure, and building innovative systems like car-pooling.

In this project, we tackle the travel time optimization problem for taxi vehicles. This can be framed
as the Traveling Salesman Problem, a well-known computer science problem. The objective is to find
the shortest route that visits a set of locations. For this problem, optimization techniques are required
to intelligently search the solution space and find near-optimal solutions. More specifically, we first
use machine learning to forecast travel times between every pair of pickup and dropoff locations.
Then we use evolutionary algorithms, namely ant colony and genetic, to find the best travel itinerary
for the vehicles in the dataset.

2 Related Work

In [1], Bell and McMullen tackled the vehicle routing problem (VRP), which is described as finding
the minimum distance or cost of the combined routes of a number of vehicles m that must service a
number of customers n. They applied the meta-heuristic method of ant colony optimization (ACO) to
an established set of VRP. The procedure in ACO simulates the decision-making processes of ant
colonies as they forage for food and is similar to other adaptive learning and AI techniques such
as Tabu Search, Simulated Annealing, and Genetic Algorithms. The authors modified the ACO
algorithm used to solve the traditional traveling salesman problem in order to allow the search of the
multiple routes of the VRP. The experiments in the paper shows that ACO is successful in finding
solutions within 1% of known optimal solutions; and broadly speaking, the use of multiple ant
colonies can provide a comparatively competitive solution technique for larger problems.

In [4], Lin, Li, Qiu, and Xu also tackled the Vehicle Routing Problem, more specifically a special
case known as Capacitated Vehicle Routing Problem with Time Windows. They proposed a routing
optimization model for ride-sharing taxi and appropriate simulated annealing algorithm to address



a static, multiple-vehicle dial-a-ride problem with time windows. In the model presented, they
considered benefits of both taxi drivers and passengers through minimizing the operating cost and
maximizing customer satisfaction. To do so, they used travel mileage, waiting time, and extra
riding time due to ride-sharing to quantify such objective functions respectively. After conducting
computational experiment, the paper confirmed that ride-sharing is an effective way to save resources
and mitigate traffic congestion.

Talking about ride-sharing, Jia, Xu, and Liu created an optimization framework for online ride-sharing
markets in [3]. Their generalized model for the Internet taxi and delivery markets can efficiently
address the inefficient matching between the supply and demand in these two-sided markets, even
with surge pricing mechanism. This model can be deployed in both centralized and distributed
scenarios. Furthermore, they proposed an approximation algorithm to solve the above problem in
an offline setting. They transfer the offline problem to the multiple disjoint paths problem, in which
the goal is to find a set of node-disjoint paths in a directed acyclic graph with maximum total values.
Their greedy approximation algorithm has a tight bound ratio that applies to the ride-sharing market
very well. Finally, they proposed two heuristic algorithms that can be used for both offline and online
settings, and the simulation results confirmed the effectiveness of these algorithms.

In [6], Xiong, Wu, and Wu also focused on a routing optimization problem, but for the traveling
salesman problem for social networks. The method proposed is an improved scheme of ant colony
optimization (ACO), which includes the choice of accessing probability and pheromone update.
First, the algorithm uses new parameters to improve the probability of ant selection, which leads to
faster convergence. Second, to avoid the shortest path to be submerged, the algorithm updates the
pheromone regulation formula to improve the search ability of the ant colony. Simulation results
show that the improved ACO can effectively achieve the goal of higher accuracy and the best results.

Following this theme, Ma, He, and Zhang conducted a study to optimize the taxi carpooling path
in [5]. Their model is built with taxi travel distance minimum as the objective function, and detour
distance, passenger satisfction, cost of passengers and taxi driver income as constraints. They used
the genetic algorithm to solve the model and was able to achieve optimal solution. Additionally, the
case study shows that the passenger carpooling shortens the total travel distance of taxi under the
condition of the same travel demand. Thus, carpooling can contriubte to the mitigation of urban
traffic congestion, energy saving, and emission reduction to some extent. Finally, taxi carpooling can
increase drivers’ income and reduce the passengers’ cost, which makes the driver and passengers to
reach a "win-win" situation.

Most recently, Bertsimas, Jaillet, and Martin [2] did an in-depth study on online vehicle routing,
where they developed an optimization framework that is tractable at the largest practical scales,
involving tens of thousands of customers per hour. They formulated the online taxi problem as a
pickup and delivery problem, using re-optimization and an efficient network flow to leverage any
prior information of ride requests to make better decisions. To scale their formulations to large-scale
real-world applications, they used the specific structure of taxi-routing applications with high demand
to dramatically reduce the problem size. Additionally, they introduced a novel "backbone" algorithm,
which first computes a restricted set of candidate actions that are likely to be optimal, allowing them
to efficiently solve a much sparser problem. Finally, they created an open-source simulation software
using state-of-the-art technologies, which can simulate and visualize New York City taxi ride data
and the complete Manhattan routing network.

3 Problem Description

3.1 Dataset

The data that we will work with is the NYC Taxi and Limousine Commission Trip Record data,
which can be accessed at this URL: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
We have the monthly data in the year 2016 for Yellow Taxi, Green Taxi, and For-Hire Vehicle. The
dataset has close to 1.5 million trip records with the following 11 attributes:

• id - a unique identifier for each trip

• vendor_id - a code indicating the provider associated with the trip record

• pickup_datetime - date and time when the meter was engaged

2

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page


• dropoff_datetime - date and time when the meter was disengaged

• passenger_count - the number of passengers in the vehicle (driver entered value)

• pickup_longitude - the longitude where the meter was engaged

• pickup_latitude - the latitude where the meter was engaged

• dropoff_longitude - the longitude where the meter was disengaged

• dropoff_latitude - the latitude where the meter was disengaged

• store_and_fwd_flag - This flag indicates whether the trip record was held in vehicle memory
before sending to the vendor because the vehicle did not have a connection to the server: Y
= store and forward and N = not a store and forward trip

• trip_duration - duration of the trip in seconds, target variable

We conducted simple data pre-processing techniques such as eliminating duplicates, checking latitude
and longtitude bounds, removing obvious outliers, converting data fields to sensible units etc. to get a
clean dataset for our experiment.

3.2 Data Visualization

A big component of our project is to visualize the data and figure out the best features to be used for
the machine learning model at the next step. Pickup Time is a feature that we first looked at:

• Figure 1 is the pickup time distribution by hours of the day. As can be seen, the most popular
pickup hours are between 6 and 10 PM with more than 70, 000 trips made. On the other
hand, the least active pickup hours are from 2 to 6 AM with less than 35, 000 trips.

• Figure 2 is the pickup time distribution by weekdays in a week. It seems like Friday is the
most popular day to hail a taxi with close to 220, 000 trips made, while Sunday is on the
other end of the spectrum with approximately 165, 000 trips.

• Figure 3 is the pickup time heatmap for the results from Figure 1 and Figure 2. The most
active pickup times are between 6 to 9 PM from Thursday to Sunday. The least active pickup
times are between 2 to 5 PM from Wednesday to Sunday.

The next feature that we examined is Trip Duration:

• Figure 4 is the trip duration distribution by minutes. We observed that the distribution is
heavily left-skewed, with more than 75% of trips between 3 and 12 minutes. More than
10, 000 trips last between 5 to 7 minutes.

• Figure 5 displays the comparisons of trip duration distribution by minutes versus by latitudes
and longtitudes. The distribution by longtitudes is also quite left-skewed, with the peak
roughly at 1 kilometers. The distribution by latitudes is more normally distributed, with the
peak at 0 kilometers.

• Figure 6 is the trip duration heatmap by minutes on hours in a day versus weekdays in a
week. The longest trips occur frequently between 2 to 4 PM from Wednesday to Friday. The
shortest trips happen between 8 to 9 AM on Monday and Tuesday.

We are also interested in Pickup and Dropoff Locations:

• We plotted the spatial density of pickup and dropoff locations, as shown in Figure 7. It looks
a bit as an image you can see from space, with Manhattan and the two airports (LGA and
JFK) "lighting up" clearly.

• We went even further to show typical trips on a map in Figure 8. The magenta circles are
pickup locations, the green circles are dropoff locations, and the cyan arrow lines are the
length of the trip. We can see an uneven distribution of pickup and dropoff locations, as
there are much more dropoff locations outside of Manhattan (Queens and Brooklyn).

3



3.3 Machine Learning

The next step of our pipeline is to build a machine learning model to predict travel times between
pickup and dropoff locations. With our data and objective, a simple linear regression won’t be
powerful enough. With a few random outliers in a huge dataset and possibly a number of categorical
features, we decided to go with gradient boosted trees, which can easily capture nonlinear relation-
ships, accommodate for complexity, and handle categorical features. The input features that we used
are: passenger_count, pickup_longitude, pickup_latitude, dropoff_longitude, dropoff_latitude,
and store_and_fwd_flag. The output target is trip_duration.

We implemented this model via XGBoost - an optimized distributed gradient boosting library
designed to be highly efficient, flexible, and portable. This model is easy to set up, but is diffi-
cult to fine-tune and interpret. We used the root mean squared logarithmic error as the evalua-
tion metric, as it reduces error magnitude. With this metric, we ran different hyper-parameters
choice and compare the results. The final parameters we used for our XGBoost model are:
{booster = gbtree, objective = linear, learning_rate = 0.05,max_depth = 14, subsample =
0.9, colsample_bytree = 0.7, colsample_bylevel = 0.7, silent = 1, feval = rmsle}
The mean absolute error we achieved is 4.83. The XGBoost model is saved as a pickle file and would
then be used as input for the next step: optimization.

4 Proposed Solutions

Because this problem involves minimizing travel time while also visiting every location, it is analogous
to the Traveling Salesman Problem (TSP). The Traveling Salesman Problem is a combinatorial NP
hard optimization problem. This means the problem does not have a polynomial time solution for it.
The possible solutions grow at a factorial rate the more locations are added. A brute force approach to
solving this problem would involve checking every possible combination of locations. If we were to
evaluate every possible path, where n represents the number of locations, it would have the following
running time:

O (n) =

[
1

2
(n− 1)!

]
(1)

Given this running time, the solution space quickly becomes intractable once we start adding more
locations to our problem definition. Therefore, we employ the use of meta-heuristics to search the
solution space directly. Rather than going through each possible path, we will generate possible paths
and search them in a guided stochastic manner.

4.1 Ant Colony Optimization

The Ant Colony Optimization (ACO) algorithm is a biologically inspired meta-heuristic that searches
the solution space in a way that emulates the way ants search possible paths. Ants leave pheromones
on their travel path, depending on the path quality. Since we are trying to minimize our travel cost,
we will have our pheromone quality τ ∝ lower travel times. Each edge in our complete graph will
have a corresponding inverse travel time cost η and pheromone τ .

With each generation, a set number of ants are randomly placed at starting points in the graph. Each
ant then builds a solution by traversing the graph. It does so by choosing the next location with a
weighted probability. The equation to calculate the probability of going from location i to location j
is:

pij =
[τij ]

α
[ηij ]

β∑
h∈E [τih]

α
[ηih]

β
(2)

Where τ represents an n× n pheromone matrix, and η represents an n× n inverse travel time cost
matrix. All values in the pheromone matrix are first initialized to 1

n2 . We found that initializing the
pheromone matrix with 1’s had little to no impact on our results. The corresponding exponents α
and β are used to control the influence of the pheromones and travel time cost in the probability

4



calculation between two nodes. In the denominator, we have a summation of these values where
h ∈ E represents all possible locations which are available for our ant to visit. These are the nodes
that particular ant has not visited yet. These terms are all added together to calculate the weighted
probability of traveling from node i to node j.

After each ant generates their corresponding solution, the pheromone matrix is updated. How this is
done depends on the strategy employed. In our solution, we update each pheromone edge by first
multiplying it by ρ, or the residual coefficient. This represents the rate at which the pheromones
"evaporate" or decrease their influence. We then add to the pheromone edge q

C where q represents
the pheromone intensity and C represents the total cost of the generated path. Because the travel
time cost is in the denominator, paths with greater travel times will have a lower probability of being
picked. This process is repeated for g number of times, where g represents the number of generations.

4.2 Genetic Evolution

Genetic Evolution (GE) is another biologically inspired meta-heuristic that takes its steps from the
process of evolution. It makes use of mutation, crossover, and selection functions over successive
generations. These generations make up a population of solutions. This optimization algorithm
follows the following steps:

1. Create a population of routes

2. Mutate

3. Crossover

4. Determine the fitness (travel time)

5. Select parent for next generation

6. Repeat from step 2

An initial population is created by randomly generating n number of paths. Our mutation and
crossover operations are based on mutation rate m and crossover rate c. Both of these values are
between 0 and 1 inclusively. When iterating over each path in the current population, we randomly
pick a different path and mutate it. Mutation is done by iterating over every location in the path
and randomly swapping it with the previous index’s location. This random swap is weighted by the
mutation factor m.

After we have created our mutant, we then begin crossover. We iterate over each index in both our
current and mutant path and select a location based on the crossover rate c:

5



Order matters in travel paths. It is not enough for us to end our crossover operation here. As shown in
the figure above, the locations 1 and 12 appears more than once. Because of this, we need to remove
duplicates. We then find the missing locations, shuffle them, and append them to the path:

Once we have the final offspring path, we can evaluate its fitness compared to the current path’s. If it
has a lower travel time, it is then chosen as the parent for the next generation, replacing the current
route. This process is repeated for g number of times, where g represents the number of generations.

5 Experimental Results

In our trial runs of each optimization algorithm we found that Ant Colony Optimization performed
better than Genetic Evolution. This is to be expected, as the Ant Colony Optimization algorithm was
specifically designed to solve the Traveling Salesman problem. We used n = 15 or fifteen different
locations for each trial with both algorithms.

5.1 Ant Colony Optimization Results

For the trials of Ant Colony Optimization, we used the following values: α = 1.0, β = 10.0, ρ = 0.5,
and q = 10.0 while we varied the number of ants and generations g.

Table 1: Ant Colony Results

Ants g Mean Cost SD Cost

10 100 126.51 0.88
10 200 128.31 0.81
10 300 126.18 0.33
10 400 129.53 0.74
10 500 126.19 0.60
20 100 128.01 0.14
20 200 127.44 1.63
20 300 126.49 1.04
20 400 126.27 0.60
20 500 126.29 0.58

6



The graphs below were produced with 10 ants and g = 100. As you can see from the average cost
per generation graph, ACO was not stuck at a local minima. It continued to explore other possible
solutions. This is evident by its wide variation in mean cost.

7



5.2 Genetic Evolution Optimization Results

For the trials of Genetic Evolution Optimization, we used the following values: mutation ratem = 0.5,
crossover rate c = 0.7 while we varied the size of population p and the number of generations g.
From the results we can see the more generations and the larger the population, the better the solution
the algorithm finds. However, compared to Ant Colony Optimization, this solution is still inferior.

Table 2: Genetic Evolution Results

p g Mean Cost SD Cost

100 100 210.62 14.29
100 200 194.48 11.04
100 300 199.62 12.01
100 400 196.95 8.98
100 500 190.39 14.48
100 100 207.88 11.48
200 200 197.59 9.69
200 300 191.99 9.98
200 400 187.17 12.27
200 500 184.14 14.66

8



9



6 Discussion

It is clear from the experimental results that Ant Colony Optimization is the better algorithm for
optimizing our problem, which is analogous to the Traveling Salesman Problem. Regardless of which
parameters we used for population p, mutation rate m, or crossover rate s in our Genetic Evolution
program, it was unable to find paths with costs as low as ACO. We believe multiple factors caused
this.

First, consider how the solution paths are generated in both algorithms. In ant colony, the travel time
cost ηij is factored into each decision an ant makes. This is because the inverse travel time matrix is
used in the probability calculation for determining which location an ant should visit next. Genetic
evolution only evaluates cost after it has applied its mutation and crossover operation. The travel cost
has no impact on this stochastic component of genetic evolution. Mutations and crossovers are done
randomly and, although influenced by crossover and mutation rate, does not consider whether these
changes give us a lower value. Only at selection do we check whether or not the offspring has a better
value.

This would explain why ant colony not only performs better, but also why it does so in such a marked
manner, such that its first generation produces a result more than a hundred minutes faster than
genetic evolution. Another factor to consider is how we implemented our mutation and crossover
operations. There may be better ways to implement them which also takes into account the cost of
the path before selection.

It is interesting to see the average cost of each generation for ant colony. It shows us that the algorithm
did not get stuck at a local minima. Rather, it was still searching for various other paths, none of
which were better than what it found. Since the ants’ decisions are based on a weighted probability,
this makes sense. Comparing this to genetic evolution’s average cost graph tells us a story about how
that algorithm is likely to converge. The trend we see with that curve is a decreasing slope that looks
soon to level off.

10



7 Conclusion

While the traveling salesman problem itself may be old, its application to modern day services
like Uber and Lyft reminds us of its relevance and ugly factorial running time. With the recent
advancements of biologically inspired optimization algorithms, we can still find feasible solutions
without having a polynomial time solution.

There is future work to be done for genetic evolution optimization in this problem domain. The
challenge will be in finding a more effective way to factor in the path cost into the mutation and
crossover operations. But as the results of this paper indicate, we affirm that ant colony optimization
truly was made to solve this kind of problem.

References

[1] Bell, John E. & McMullen, Patrick R. (2004) Ant colony optimization techniques for the vehicle
routing problem. In Advanced Engineering Informatics 18, pp. 41–48. Elsevier.

[2] Bertsimas, Dimitris & Jaillet, Patrick & Martin, Sebastien. (2018) Online Vehicle Routing: The
Edge of Optimization in Large-Scale Applications. Accepted for publication in Operations Research.
Operations Research Center, Massachusetts Institute of Technology. Cambridge, MA.

[3] Jia, Yongzheng & Xu, Wei & Liu, Xue. (2016) An Optimization Framework For Online Rideshar-
ing Markets. arXiv preprint arXiv:1612.03797.

[4] Lin, Yeqian & Li, Wenquan & Qiu, Feng & Xu, He. (2012) Research on Optimization of Vehicle
Routing Problem for Ridesharing Taxi. 8th International Conference on Traffic and Transportation
Studies, Changsha, China, August 1–3, 2012. Procedia - Social and Behavioral Sciences 43: 494-502.

[5] Ma, Changxi & He, Ruichun & Zhang, Wei (2018) Path optimization of taxi carpooling. PLoS
ONE 13(8): e0203221 https://doi.org/10.1371/journal.pone.0203221

[6] Xiong, Naixue & Wu, Wenliang & Wu, Chunxue (2017) An Improved Routing Optimization
Algorithm Based on Travelling Salesman Problem for Social Networks. Sustainability 9, 985.
doi:10.3390/su9060985

Appendix

Figure 1: Pickups Hour Distribution

11



Figure 2: Pickups Weekday Distribution

Figure 3: Pickups Heatmap Hours Versus Weekdays

Figure 4: Trip Duration Distribution By Minutes

Figure 5: Trip Duration Histogram By Minutes, Latitudes, and Longtitudes

12



Figure 6: Trip Duration Heatmap in Minutes Hours Versus Weekdays

Figure 7: Spatial density plot of the pickup and dropoff locations

13



Figure 8: Typical trips on the New York City Map

14


	Introduction
	Related Work
	Problem Description
	Dataset
	Data Visualization
	Machine Learning

	Proposed Solutions
	Ant Colony Optimization
	Genetic Evolution

	Experimental Results
	Ant Colony Optimization Results
	Genetic Evolution Optimization Results

	Discussion
	Conclusion

