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Problem Formulation




Main Contributions

e End-to-end solution for large-scale clothing retrieval and
visual recommendation.

e |earn the important regions in an image.

e Generate diverse recommendations based on semantic
similarity.

e Evaluate my method on in-shop retrieval task.



Literature Review

e Clothing Attribute Recognition

e Clothing Image Generation

e Clothing Item Retrieval

e Fashion Recommendation System




Proposed Method

Input Image Feature Map Spatial Transformer

Updated Feature Map ——<—Attention Branch
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Global Branch

All convolutional layers
have 1 x 1 padding.
All other layers have a
1 x 1 stride.

All max pooling layers
have a 4 x 4 stride.

3 x 3 kernels for the
convolutional filters.
Batch Normalization
layers.

Dropout layers.

convolution
convolution
dropout (25%)
max pooling
batch normalization
convolution

convolution
dropout (25%)
max pooling
batch normalization

convolution
convolution

output size
384 x 256 x 64
384 x 256 x 64
384 x 256 x 64
06 x 64 x 64
06 X 64 x 64
06 x 64 x 128
06 X 64 x 128
06 X 64 x 128
24% 16x 128
24% 16x 128
24X 16 x 256
24X 16 % 256




Attention Branch

Spatial Transformer Layer Texture Encoding Layer
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k-Nearest Neighbor

Euclidean Distance




Fashion144k

ach

FASHION144K DATASET

e 90,000 training images.
e 128 classes. A e
e 384 x 256 image i g ez
resolution. 0 o
e Multi-label annotations.

e Fashionability scores.
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DeepFashion

e 800,000 images.

e Annotations about
landmarks, categories,
pairs etc.

e In-Shop Clothes
Retrieval Benchmark:

o 52,000 images.
o 8,000 clothing
items.




Experiments

e Trained the model on Fashion144k with 59 item labels,
excluding color labels.
e Evaluated the model for in-shop retrieval task on DeepFashion.

e Experimental Setting:
PyTorch

Adam Optimizer
Batch Size 64
Learning Rate 0.00001
Momentum 0.9

40 Epochs

O O O O O O



Multi-Label Classification Loss

where, N is the number of training samples, C is the number of class
labels, *p_i is the ground-truth probability vector of the i-th sample, and

p_iis the predicted label vector of that sample .



Diversity Loss

K HxW

_l.,l ll\ Iﬂ

where, K is the total steps of recurrent attention, H x W is the height and
width of attention maps, | _k is the k-th attention map, and |_k,i is the i-th
attention value of the attention map after conducting softmax on H x W

locations at time step t.



Localization Loss

Lioe = Lg + AL+ A2Lp,

Anchor Constraint:

Scale Constraint:

e - = max(0, 5 — sz) +max(0, 5 — sy),



Combined Loss

where gamma1 and gammaz2 are the weighted parameters, and they

are set as 0.01 and 0.1, respectively.



Results
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Conclusion

e Using clothing parts for recommendation gives much
variability in the recommendation results.

e Attention model can be used to learn discriminative
features and semantic regions from the images.

e Texture-based features are important for learning different

regions.
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